暑假集训CSP提高模拟1
A.Start
比较小的大模拟,还没改出来
B.mine
线性推一下(这个题记搜容易写偏,因为分讨太多)
设 \(f[i][j]\),第一维表示位置,第二位表示末位状态(是雷,是 \(0\),是 \(2\),是 \(1\) 且雷在左边,是 \(1\) 且雷在右边)
初始化:
第二位有雷,第一位初始化为右雷 \(1\)
第二位是问号,则第一位可以是右雷 \(1\) 或 \(0\)
否则为空
转移:
是雷:前一位可为右雷 \(1\),\(2\) 或雷
是 \(0\),前一位可为 \(0\) 或左雷 \(1\)
是 \(1\),分讨,左雷 \(1\) 前一位可为雷,右雷 \(1\) 前一位可为 \(0\) 或左雷 \(1\)
是 \(2\),前一位只能为雷
是问号,分讨上述情况
最后统计答案直接对 \(0\),左雷 \(1\) 和 \(2\) 求和即可(因为不存在的可能方案为零,对答案无影响,此处不用分讨)
C.小凯的疑惑
设 \(x=k_1 (x,y),y=k_2 (x,y)\)
则 \(ax+by=ak_1 (x,y)+bk_2(x,y)\)
\(ax+by=(ak_1+bk_2)(x,y)\)
注意到当 \((x,y)\neq 1\) 时,无法得到全部正整数,此时无解
当每种都必须选一个时,不能凑成的最大钱数为 \(x\times y\)
证明如下:
充分性:\(x\times y=ax+by\) 无解
假设原式有解,且 \(gcd(x,y)=1\),根据裴蜀定理,\(x\times y=1\)
即 \(ax+by=1\),再由裴蜀定理,此方程无全正解,假设不成立
必要性证明比较麻烦,参见 此处
因此在 \(x\times y\) 范围内统计答案即可,暴力可过
UPD: 感谢评论区大佬的指正,实际上最大的不可获得数字为 \(xy-x-y\),这里算的是 \(a,b\lt 0\) 的情况,还要再减去一个 \((a+b)\)
D.春节十二响
注意到,两个节点能合并,当且仅当他们在不同的子树内
并且,两个更大的点合并后,对答案的贡献越少
因此考虑从深到浅枚举根节点合并,每次都挑两个部分最大的合并,这样能够使答案尽可能的小
想到优先队列,维护一下即可
暑假集训CSP提高模拟1的更多相关文章
- 2015UESTC 暑假集训总结
day1: 考微观经济学去了…… day2: 一开始就看了看一道题目最短的B题,拍了半小时交了上去wa了 感觉自己一定是自己想错了,于是去拍大家都过的A题,十分钟拍完交上去就A了 然后B题写了一发暴力 ...
- 牛客网NOIP赛前集训营-提高组(第四场)游记
牛客网NOIP赛前集训营-提高组(第四场)游记 动态点分治 题目大意: \(T(t\le10000)\)组询问,求\([l,r]\)中\(k(l,r,k<2^{63})\)的非负整数次幂的数的个 ...
- 牛客网NOIP赛前集训营-提高组(第四场)B区间
牛客网NOIP赛前集训营-提高组(第四场)B区间 题目描述 给出一个序列$ a_1 \dots a_n$. 定义一个区间 \([l,r]\) 是好的,当且仅当这个区间中存在一个 \(i\),使得 ...
- STL 入门 (17 暑假集训第一周)
快速全排列的函数 头文件<algorithm> next_permutation(a,a+n) ---------------------------------------------- ...
- 牛客网NOIP赛前集训营-提高组(第四场)B题 区间
牛客网NOIP赛前集训营-提高组(第四场) 题目描述 给出一个序列 a1, ..., an. 定义一个区间 [l,r] 是好的,当且仅当这个区间中存在一个 i,使得 ai 恰好等于 al, al+1, ...
- 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告
目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...
- 20190820 Tue 集训总结&NOIP模拟 27
低谷度过了? 但是skyh阿卡了,还是反衬出我的辣鸡. T1知道要sort,却忘了判重,正解不如暴力分高,555. T2成功化出正解柿子,然后化过头了,化出了无法DP的柿子. 果然不够强,大神们一眼就 ...
- 暑假集训Day2 互不侵犯(状压dp)
这又是个状压dp (大型自闭现场) 题目大意: 在N*N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. ...
- 暑假集训Day1 整数划分
题目大意: 如何把一个正整数N(N长度<20)划分为M(M>=1)个部分,使这M个部分的乘积最大.N.M从键盘输入,输出最大值及一种划分方式. 输入格式: 第一行一个正整数T(T<= ...
- #10471. 「2020-10-02 提高模拟赛」灌溉 (water)
题面:#10471. 「2020-10-02 提高模拟赛」灌溉 (water) 假设只有一组询问,我们可以用二分求解:二分最大距离是多少,然后找到深度最大的结点,并且把它的\(k\)倍祖先的一整子树删 ...
随机推荐
- 【超实用攻略】SpringBoot + validator 轻松实现全注解式的参数校验
一.故事背景 关于参数合法性验证的重要性就不多说了,即使前端对参数做了基本验证,后端依然也需要进行验证,以防不合规的数据直接进入服务器,如果不对其进行拦截,严重的甚至会造成系统直接崩溃! 本文结合自己 ...
- 在英特尔 Gaudi 2 上加速蛋白质语言模型 ProtST
引言 蛋白质语言模型 (Protein Language Models, PLM) 已成为蛋白质结构与功能预测及设计的有力工具.在 2023 年国际机器学习会议 (ICML) 上,MILA 和英特尔实 ...
- 如何对jar包修改并重新发布在本机
本人苦于jieba不能如何识别伊利丹·怒风,召唤者坎西恩这种名字,对jieba-analysis进行了解包和打包 步骤1:找到对应jar 步骤2:在cmd中输入jar -xvf xxx.jar解压包, ...
- 【Keepalived】KP + NGINX 多机热备学习
案例搭建 环境是三台机器,两台也可以 最后一个IP是测试的VIP 192.168.124.21 centos6-1 192.168.124.22 centos6-2 192.168.124.23 ce ...
- 【Windows】Win10 20H2版本 管理员身份问题
问题描述: 从之前的1909版本升级过来的,在一开始就是管理员身份,升级之后还是管理员身份没错 但是打开一些软件又会开始提示是否安全,还有C盘访问权限警告. 解决办法: 参考方案地址 http://w ...
- 【转载】 arXiv论文提交流程
原文地址: https://blog.csdn.net/u010705932/article/details/105834469 =================================== ...
- ChatGPT的训练费用以及成功原因
参考: https://baijiahao.baidu.com/s?id=1772914234034992726&wfr=spider&for=pc ================= ...
- 中美在AI领域差距12个月
看到一个新闻: <马斯克再谈AI:中美差距12个月> 其实想想这个评价也还中肯,尽管这些年国内AI大有弯道超车之势,但是不可否认的是由于欧美的历史领先优势和强大的科研及商业上的独立创新能力 ...
- 一直让 PHP 程序员懵逼的同步阻塞异步非阻塞,终于搞明白了
大家好,我是码农先森. 经常听到身边写 Java.Go 的朋友提到程序异步.非阻塞.线程.协程,让系统性能提高到百万.千万并发,使我甚是惊讶属实羡慕.对于常年写 PHP 的我来说,最初听到这几个词时, ...
- GOT & PLT 易于理解的个人笔记
为什么我们用动态链接和GOT表 我们知道静态链接就没那么多事,直接把全部要用的函数都绑定在一起,各个变量和函数之间的偏移量当然能算出来. 但是这也恰恰是静态链接的缺点,相同的代码段反复调用真是太臃肿了 ...