#排列组合,背包#CF232B Table
题目
有一个 \(n\times m\) 的矩阵,求使得每个 \(n\times n\) 的矩阵中都有正好 \(k\) 个点的方案数。
分析
考虑到如果确定了前 \(n\) 列的选点个数,那么对于一列选点的个数是固定的,可以用组合数实现。
那么设 \(dp[i][j]\) 表示前 \(i\) 列选择了 \(j\) 个点的方案数。
\(dp[i][j]=\sum_{k=1}^ndp[i-1][j-k]*C(n,k)^{\frac{m}{n}}\)
向上取整向下取整取决于 \(i\),然后组合数快速幂都预处理就可以做到 \(O(n^4)\) 了
代码
#include <iostream>
using namespace std;
const int N=111,mod=1000000007; long long m;
int n,k,inv[N],s,f[N*N],g[N],G[N],dp[N*N];
int ksm(int x,int y){
int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
int main(){
cin>>n>>m>>k,inv[0]=inv[1]=s=1;
for (int i=2;i<=n;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for (int i=2;i<=n;++i) inv[i]=1ll*inv[i-1]*inv[i]%mod,s=1ll*s*i%mod;
for (int i=0;i<=n;++i) f[i]=1ll*s*inv[i]%mod*inv[n-i]%mod;
for (int i=0;i<=n;++i) g[i]=ksm(f[i],(m/n)%(mod-1)),G[i]=1ll*g[i]*f[i]%mod;
dp[0]=1;
for (int T=0;T<m%n;++T){
for (int j=0;j<=k;++j) f[j]=dp[j];
for (int i=1;i<=n;++i)
for (int j=i;j<=k;++j)
Mo(dp[j],1ll*f[j-i]*G[i]%mod);
}
for (int T=m%n;T<n;++T){
for (int j=0;j<=k;++j) f[j]=dp[j];
for (int i=1;i<=n;++i)
for (int j=i;j<=k;++j)
Mo(dp[j],1ll*f[j-i]*g[i]%mod);
}
cout<<dp[k];
return 0;
}
#排列组合,背包#CF232B Table的更多相关文章
- 学习sql中的排列组合,在园子里搜着看于是。。。
学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...
- erlang实现排列组合问题
今天在公司做一个日志分析的任务,在做统计的时候,遇到这样一个问题, 之前已经将数据拆分好,出现这样一张中间表Table,简略写如下: A属性 B属性 C属性 D属性 1 3 ...
- .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)
今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(一)—组合生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- hdu1521 排列组合(指数型母函数)
题意: 有n种物品,并且知道每种物品的数量ki.要求从中选出m件物品的排数. (全题文末) 知识点: 普通母函数 指数型母函数:(用来求解多重集的排列问题) n个元素,其中a1,a2, ...
- [leetcode] 题型整理之排列组合
一般用dfs来做 最简单的一种: 17. Letter Combinations of a Phone Number Given a digit string, return all possible ...
- 排列组合算法(PHP)
用php实现的排列组合算法.使用递归算法,效率低,胜在简单易懂.可对付元素不多的情况. //从$input数组中取$m个数的组合算法 function comb($input, $m) { if($m ...
- iOS多线程中,队列和执行的排列组合结果分析
本文是对以往学习的多线程中知识点的一个整理. 多线程中的队列有:串行队列,并发队列,全局队列,主队列. 执行的方法有:同步执行和异步执行.那么两两一组合会有哪些注意事项呢? 如果不是在董铂然博客园看到 ...
随机推荐
- win32 - 将文件的访问权限给特定的用户
需要首先获取特定用户的SID. 这是一些步骤, 验证输入参数. 为可能足够大的SID和域名创建缓冲区. 在循环中,调用LookupAccountName以检索提供的帐户名的SID.如果SID的缓冲区或 ...
- centos7 安装vmware tool 遇到遇到 kernel-headers 问题修复
安装 vmware tool 步骤 1. cp VMwareTools-10.3.25-20206839.tar.gz 到 用户目录下 2. tar zxf VMwareTools-10.3.25-2 ...
- 学习go语言编程之安全编程
数据加密 对称加密 采用单密钥的加密算法,称为对称加密. 常见的单密钥加密算法有DES.AES.RC4等. 在对称加密中,私钥不能暴露,否则在算法公开的情况下,数据等同于明文. 非对称加密 采用双密钥 ...
- 麒麟系统开发笔记(八):在国产麒麟系统上使用linuxdeployqt发布qt程序
前言 在ubuntu上发布qt程序相对还好,使用脚本,但是在麒麟上发布的时候,因为银河麒麟等不同版本,使用脚本就不太兼容,同时为了实现直接点击应用可以启动应用的效果,使用linuxdeployqt ...
- 有了这份Java面试中的葵花宝典,让你面试起飞!!!
HashMap面试题 HashMap与HashTable的区别 1.HashMap线程不安全 HashTable 线程是安全的采用synchronized 2.HashMap允许存放key 为null ...
- 【App Service for Windows】为 App Service 配置自定义 Tomcat 环境
问题描述 当在App Service for Windows环境中所列出的Tomcat Version 没有所需要的情况下,如何实现自定义Tomcat 环境呢? 问题解答 第一步: 从官网下载要使用的 ...
- 【Azure Redis 缓存】在Azure Redis中,如何限制只允许Azure App Service访问?
问题描述 在Azure Redis服务中,如何实现只允许Azure App Service访问呢? 问题解答 Azure Redis 开启 防火墙的功能,并在防火墙中添加上App Service的出口 ...
- 【Azure 应用服务】如何查看App Service中的私网IP地址?
问题描述 在使用App Service服务时,可以通过Azure 门户中的属性功能查看出站IP列表. 如果把App Service与虚拟网络(VNET)集成后,它就可以直接访问虚拟网络内部资源,那么如 ...
- 【Azure Redis 缓存】如何使得Azure Redis可以仅从内网访问? Config 及 Timeout参数配置
问题描述 问题一:Redis服务,如何可以做到仅允许特定的子网内的服务器进行访问? 问题二:Redis服务,timeout和keepalive的设置是怎样的?是否可以配置成timeout 0? 问题三 ...
- 动态代码框架发布-CZGL.Roslyn
CZGL.Roslyn 开源项目位置:https://github.com/whuanle/CZGL.CodeAnalysis 基于 Roslyn 技术的 C# 动态代码构建器以及编译器,开发者可以使 ...