#排列组合,背包#CF232B Table
题目
有一个 \(n\times m\) 的矩阵,求使得每个 \(n\times n\) 的矩阵中都有正好 \(k\) 个点的方案数。
分析
考虑到如果确定了前 \(n\) 列的选点个数,那么对于一列选点的个数是固定的,可以用组合数实现。
那么设 \(dp[i][j]\) 表示前 \(i\) 列选择了 \(j\) 个点的方案数。
\(dp[i][j]=\sum_{k=1}^ndp[i-1][j-k]*C(n,k)^{\frac{m}{n}}\)
向上取整向下取整取决于 \(i\),然后组合数快速幂都预处理就可以做到 \(O(n^4)\) 了
代码
#include <iostream>
using namespace std;
const int N=111,mod=1000000007; long long m;
int n,k,inv[N],s,f[N*N],g[N],G[N],dp[N*N];
int ksm(int x,int y){
int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
void Mo(int &x,int y){x=x+y>=mod?x+y-mod:x+y;}
int main(){
cin>>n>>m>>k,inv[0]=inv[1]=s=1;
for (int i=2;i<=n;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for (int i=2;i<=n;++i) inv[i]=1ll*inv[i-1]*inv[i]%mod,s=1ll*s*i%mod;
for (int i=0;i<=n;++i) f[i]=1ll*s*inv[i]%mod*inv[n-i]%mod;
for (int i=0;i<=n;++i) g[i]=ksm(f[i],(m/n)%(mod-1)),G[i]=1ll*g[i]*f[i]%mod;
dp[0]=1;
for (int T=0;T<m%n;++T){
for (int j=0;j<=k;++j) f[j]=dp[j];
for (int i=1;i<=n;++i)
for (int j=i;j<=k;++j)
Mo(dp[j],1ll*f[j-i]*G[i]%mod);
}
for (int T=m%n;T<n;++T){
for (int j=0;j<=k;++j) f[j]=dp[j];
for (int i=1;i<=n;++i)
for (int j=i;j<=k;++j)
Mo(dp[j],1ll*f[j-i]*g[i]%mod);
}
cout<<dp[k];
return 0;
}
#排列组合,背包#CF232B Table的更多相关文章
- 学习sql中的排列组合,在园子里搜着看于是。。。
学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...
- erlang实现排列组合问题
今天在公司做一个日志分析的任务,在做统计的时候,遇到这样一个问题, 之前已经将数据拆分好,出现这样一张中间表Table,简略写如下: A属性 B属性 C属性 D属性 1 3 ...
- .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)
今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(一)—组合生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- hdu1521 排列组合(指数型母函数)
题意: 有n种物品,并且知道每种物品的数量ki.要求从中选出m件物品的排数. (全题文末) 知识点: 普通母函数 指数型母函数:(用来求解多重集的排列问题) n个元素,其中a1,a2, ...
- [leetcode] 题型整理之排列组合
一般用dfs来做 最简单的一种: 17. Letter Combinations of a Phone Number Given a digit string, return all possible ...
- 排列组合算法(PHP)
用php实现的排列组合算法.使用递归算法,效率低,胜在简单易懂.可对付元素不多的情况. //从$input数组中取$m个数的组合算法 function comb($input, $m) { if($m ...
- iOS多线程中,队列和执行的排列组合结果分析
本文是对以往学习的多线程中知识点的一个整理. 多线程中的队列有:串行队列,并发队列,全局队列,主队列. 执行的方法有:同步执行和异步执行.那么两两一组合会有哪些注意事项呢? 如果不是在董铂然博客园看到 ...
随机推荐
- leetcode - 相同的树
给你两棵二叉树的根节点 p 和 q ,编写一个函数来检验这两棵树是否相同. 如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的. 示例 1: 输入:p = [1,2,3], q = [1 ...
- Qt开发技术:QCharts(四)QChart面积图介绍、Demo以及代码详解
若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...
- Gin框架使用jwt-go配合中间件认证
参考文档 // 文档 https://github.com/golang-jwt/jwt https://pkg.go.dev/github.com/golang-jwt/jwt@v3.2.2+inc ...
- 学会了Java 8 Lambda表达式,简单而实用
OneAPM 摘要:此篇文章主要介绍Java8 Lambda 表达式产生的背景和用法,以及 Lambda 表达式与匿名类的不同等.本文系OneAPM工程师编译整理. Java是一流的面向对象语言,除了 ...
- Lua 中如何实现继承
本文主要参考了菜鸟教程中的 Lua 面向对象,再加上自己学习过程的中思考,特此记录,如果文中有不对的地方,请不吝赐教. 这里就不在介绍面向对象的基本思想了,主要讲一讲 Lua 中如何实现继承,包括单继 ...
- 【Azure 环境】中国区Azure是否可以根据资源组的模板,生成一个可视化的架构图呢?
问题描述 这是一个国际版链接(https://docs.microsoft.com/en-us/answers/questions/370410/how-to-generate-architectur ...
- C#的托盘窗体显示与隐藏效果 - 开源研究系列文章
今天无聊,进行的C#的编码内容仍然在继续.这些天不断地在完善及编写C#的Winform相关的代码,并将其整理形成博文.这次带来的是关于窗体的显示及隐藏效果的代码段.上次有过一个代码,这次当做新代码进行 ...
- Rust 开发的高性能 Python 包管理工具,可替换 pip、pip-tools 和 virtualenv
最近,我在 Python 潮流周刊 中分享了一个超级火爆的项目,这还不到一个月,它在 Github 上已经拿下了 8K star 的亮眼成绩,可见其受欢迎程度极高!国内还未见有更多消息,我趁着周末把一 ...
- 第18章_MySQL8其它新特性
# 目录: https://www.cnblogs.com/xjwhaha/p/15844178.html 1. MySQL8新特性概述 MySQL从5.7版本直接跳跃发布了8.0版本,可见这是一个令 ...
- SSH原理与实践(三)安装和使用
主页 个人微信公众号:密码应用技术实战 个人博客园首页:https://www.cnblogs.com/informatics/ 引言 在之前SSH原理与实践系列文章中,我们主要讲解了SSH协议的原理 ...