从数据洞察到智能决策:合合信息&infiniflow RAG技术的实战案例分享

标题取自 LLamaIndex,这个内容最早提出于今年 2 月份 LlamaIndex 官方博客。从 22 年 chatGpt 爆火,23 年大模型尝鲜,到 24 年真正用 AI 落地业务场景,业界普遍都发现了从 MVP 到 PMF 不是那么容易的,具体的原因有非常多,在 RAG 场景下,最主要的表现是企业的数据 “垃圾进,垃圾出”,如何利用好企业数据是提升 RAG 效果的关键

看一下各个公司都是怎么做的

1. 合合信息

官方网站:https://www.textin.com/

一周快速出 Demo,半年产品不好用

RAG 范式从直观上理解起来落地是比较容易的,通过自然语言的语意匹配度找到相关的内容,再让模型进行回答,可是在实际落地过程中发现效果比预期差很多,总结起来会有以下一些问题

1.1 LLM RAG 产品如何快速达到可用、好用,开始增长?

如何解决 RAG 落地过程中遇到问题,提升 RAG 的整体效果,达到线上生产可用的目标,首先落地的关键点在于

再回归本质,影响 RAG 落地效果的最本质问题在于

1.2 提升 RAG 效果核心的优化方向:高质量文档解析 + 高质量检索

  • RAG 优化目标一: 快速、稳定、精准解析文档

原始的文档是各种各样的格式,各种各样的模态,如何快速、精确解析出高质量的内容对提升最终检索效果非常重要

  • RAG 优化目标二: 高精度、高效率向量检索

从海量的内容中提取出最相关的内容,对提升 LLM 输出效果准确率、相关性非常重要

  • TextIn 通用文本解析技术 + Acge 向量化模型

合合信息自研了 TextIn 通用文本解析技术,对丰富的文档格式和内容能快速,精准解析为 MD 格式,另外自研的 acge_text_embedding 向量化模型在检索准确率,精度等方面表现也非常突出

  • TextIn 技术的一些介绍和效果展示 (示例,详见附录 PPT)















  • acge_text_embedding 向量化模型的效果展示

  • 线上产品效果展示

  • 总结

2.infiniflow(英飞流)

官网:https://infiniflow.org/

infiniflow 自研了 AI-Native Database Infinity,在 RAG 检索方面表现非常突出

  • 下一代 RAG 引擎





同样对于 RAG 效果的提升,英飞流的核心研究方向也是高质量的内容解析 + 高质量的检索

  • 内容解析

  • 效果展示

  • 表格识别模型

  • 文档识别模型

  • 多模态识别

这里演讲人描述了和月之暗面创始人关于多模态识别的讨论,在大模型厂商看来,目前英飞流做的内容识别的工作都是雕花,因为大模型的上下文会越来越长,但演讲人还是更坚定于解决当前内容识别效果提升的问题,这里没有对错,只是看什么方案更适合

  • 混合检索

英飞流提供的 AI Native 数据库是个亮点,由于当前向量化检索的一些限制 (数据量、延迟、精度等),各种数据库在混合检索方面支持的效果参差不齐,英飞流致力于提供高性能、高精度、支持海量数据、支持混合检索的 AI

  • Native 数据库

Infinity 支持稠密向量、稀疏向量、张量、全文检索、结构化检索等丰富检索方式,了解 cross-encoder 的同学应该知道,cross-encoder 在检索效果方面比双编码器要好很多,但随着数据量提升,延迟不断升高,通常是不能接受的。随着 colbert 延迟交互的提出,目前业界针对检索效果和检索性能方面有了更让人惊喜的方案,但 colbert 也有一些工程问题,比如上下文限制,无法端到端使用等,Infinity 数据库支持 Tensor 数据类型,原生支持了 colbert 端到端方案,保障效果的前提下并解决海量数据检索延迟的问题,还是非常惊喜的



性能方面的表现非常突出

Intinity 在检索效率和效果上做到了兼顾

  • 延迟交互是 RAG 的未来

2.1高级 RAG

另外一个分享的主体是在复杂查询下如何提升检索效果

  • Agentic RAG

这里通常的思路都是进行问题预处理,人机协同反馈调优,没什么大的差异

  • 知识图谱

知识图谱是一个很优秀的技术,对检索结果效果优化是非常好的补充

小结

3.LlamaIndex

博客:https://www.llamaindex.ai/blog

llamaIndex 提到的优化方向和上边提到方向是一致的,这说明在企业落地 RAG 项目中,重点应该关注的是内容的解析效果和内容检索的效果

关于 llamaIndex 的分享内容这里不详细罗列,感兴趣可以看下附录的 PPT,这里主要看下 llamaIndex 做了哪些工作

3.1 LlamaParse

LlamaIndex 提供了 LlamaParse 可以解析复杂的多格式、多模态的文档,并以 AI Friendly(MD) 的格式输出

这里可以简单说 AI Friendly,其实业界提出 MD 格式是对 AI Friendly 的格式,在我们日常和业务合作过程中,也发现了 MD 的效果是最好的

另外,chunk 一般建议最好一个 chunk 是一篇文档,保障最完整的语意,这给了我们一个组织文档的经验建议

3.2 LlamaExtract

LlamaExtract 在 llamaIndex 分享的 ppt 没有提及,但在官方博客中提了,主要是以结构化的方式提取出文档的信息,有点类似图谱,是对文档检索内容的一个非常好的补充,感兴趣可以看下官方博客

从数据洞察到智能决策:合合信息&infiniflow RAG技术的实战案例分享的更多相关文章

  1. Tidyverse|数据列的分分合合,爱恨情仇

    Tidyverse|数据列的分分合合,爱恨情仇 本文首发于“生信补给站”Tidyverse|数据列的分分合合,一分多,多合一 TCGA数据挖掘可做很多分析,前期数据“清洗”费时费力但很需要. 比如基因 ...

  2. “融而开放、合以创新”T-HIM融合通信技术开发实战

    本文来自腾讯云技术沙龙,本次沙龙主题为T-HIM融合通信技术开发实战 2018年,企业的数字化转型大规模兴起,"数字化经济"时代来临.如何利用数字化技术来支持业务的转型.增长与创新 ...

  3. 【前端优化之拆分CSS】前端三剑客的分分合合

    几年前,我们这样写前端代码: <div id="el" style="......" onclick="......">测试&l ...

  4. 【Python自动化Excel】pandas处理Excel的“分分合合”

    话说Excel数据表,分久必合.合久必分.Excel数据表的"分"与"合"是日常办公中常见的操作.手动操作并不困难,但数据量大了之后,重复性操作往往会令人崩溃. ...

  5. 【Python自动化Excel】pandas操作Excel的“分分合合”

    话说Excel数据表,分久必合.合久必分.Excel数据表的"分"与"合"是日常办公中常见的操作.手动操作并不困难,但数据量大了之后,重复性操作往往会令人崩溃. ...

  6. 【视频合集】极客时间 react实战进阶45讲 【更新中】

    https://up2.v.sharedaka.com/video/ochvq0AVfpa71A24bmugS5EewhFM1553702519936.mp4 01 React出现的历史背景及特性介绍 ...

  7. Agora 教程丨一个典型案例,教你如何使用水晶球“数据洞察”

    7 月初,声网Agora 水晶球的"数据洞察"功能正式版上线."数据洞察"可显示两种数据,一种是用量,另一种是质量. "数据洞察"的&quo ...

  8. GPRS GPRS(General Packet Radio Service)是通用分组无线服务技术的简称,它是GSM移动电话用户可用的一种移动数据业务,属于第二代移动通信中的数据传输技术

    GPRS 锁定 本词条由“科普中国”百科科学词条编写与应用工作项目 审核 . GPRS(General Packet Radio Service)是通用分组无线服务技术的简称,它是GSM移动电话用户可 ...

  9. 总结2015搭建日志,监控,ci,前端路由,数据平台,画的图与界面 - hugo - ITeye技术网站

    总结2015搭建日志,监控,ci,前端路由,数据平台,画的图与界面 - hugo - ITeye技术网站 极分享:高质分享+专业互助=没有难做的软件+没有不得已的加班 极分享:高质分享+专业互助=没有 ...

  10. 【Python】动手分析天猫内衣售卖数据,得到你想知道的信息

    大家好,希望各位能怀着正直.严谨.专业的心态观看这篇文章.ヾ(๑╹◡╹)ノ" 接下来我们尝试用 Python 抓取天猫内衣销售数据,并分析得到中国女性普遍的罩杯数据.最受欢迎的内衣颜色是什么 ...

随机推荐

  1. 小程序-云数据库的add,get,remove,update

    云数据库的使用就是使用简单的原生封装wx.cloud.database().collection("list"),然后就是add,get,remove,update四个方法 初始化 ...

  2. 《从零开始学习Python爬虫:顶点小说全网爬取实战》

    顶点小说 装xpath helper GitHub - mic1on/xpath-helper-plus: 这是一个xpath开发者的工具,可以帮助开发者快速的定位网页元素. Question:加载完 ...

  3. 网易数帆内核团队:memory cgroup 泄漏问题的分析与解决

    memory cgroup 泄露是 K8s(Kubernetes) 集群中普遍存在的问题,轻则导致节点内存资源紧张,重则导致节点无响应只能重启服务器恢复:大多数的开发人员会采用定期 drop cach ...

  4. [oeasy]python0002_终端_CLI_GUI_编程环境_游戏_真实_元宇宙 🥊

    回忆   上次 了解了 python 语言的特点 历史悠久 功能强大 深受好评 已成趋势   3大主流操作系统 mac windows linux             添加图片注释,不超过 140 ...

  5. vue小知识~ref和$refs

    $refs表示的是获取被ref标识的标签的DM实例. 用法简单: 标签上: <div ref='refName'></div> 获取: this.$refs.refName 就 ...

  6. 软件设计 软件设计模式之SOLID原则

    软件设计模式之SOLID原则 By:授客 QQ:1033553122 #单一职责原则(SRP) 定义:任何一个软件模块都只对某一类行为者负责 说明:这里"软件模块",在大部分情况下 ...

  7. Intent 显示与隐式了解认识

    显示Intent 用于精确匹配,指定跳转目标 1.在intent构造函数中调用 Intent intent = new Intent(this,XX.class); 2.调用意图对象的setClass ...

  8. 【SVN】提交失败报错

    SVN提交失败: 最后信息是提示 请输入日志消息,至少需要20个字符,提交终止 问题原因是: 提交的时候不要把提交信息换行来写,SVN只会读取第一行内容 如果消息没有问题还提交失败,可能是文件因为提交 ...

  9. T800机器人图片 —— 强大的好莱坞电影工业,T800机器人模型也如此精细真实!

    视频地址: https://www.ixigua.com/6764744689003266571

  10. 【转载】 tensorflow batch_normalization的正确使用姿势

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/computerme/article/de ...