二叉搜索树

基本概念

二叉搜索树(BST,Binary Search Tree)

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  • 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  • 它的左右子树也分别为二叉搜索树

int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};

二叉搜索树/二叉查找树也称二叉排序树,因为二叉排序树的中序遍历结果是升序

常用结论

二叉搜索树的左子树一定小于根,右子树一定大于根,结合定义递归子树可以得到

  • 左子树的最右节点是左子树的最大节点,右子树的最右节点是右子树的最大节点.

  • 左子树的最左节点是左子树的最小节点,右子树的最左节点是右子树的最小节点.

  • 二叉搜索树的最小节点是左子树的最左节点,最大节点是右子树的最右节点

用途

实际情况很少直接使用搜索二叉树,多是根据搜索二叉树的高效搜索特性,衍生出更为实用的高阶数据结构,例如平衡二叉搜索树(AVL树,红黑树)等...

  1. K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。(在不在的问题)

    比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:

    以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树

    在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。

还有如:门禁系统,车库系统等...

  1. KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方

    式在现实生活中非常常见: (通过一个值查找另一个值)

    比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英

    文单词与其对应的中文<word, chinese>就构成一种键值对;

    再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出

    现次数就是<word, count>就构成一种键值对。

还有如:通讯录

二叉搜索树的性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。

但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:$log_2 N$ ($log_2 N$)

最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为:$\frac{N}{2}$ ($\frac{N}{2}$)

二叉搜索树的操作

查找

  1. 从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
  2. 最多查找高度次,走到到空,还没找到,这个值不存在。

插入

  1. 树为空,则直接新增节点,赋值给root指针(第一个节点就是root)
  2. 树不空,按二叉搜索树性质查找插入位置,插入新节点

特别地

  • 同样一组数据,插入顺序不同,得到的二叉树也不同

  • 当插入的值已存在时,插入失败(不考虑multi)

删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回.

否则,根据树的结构定义,可以得到3种情况

  1. 要删除的结点无孩子结点
  2. 要删除的结点只有左孩子或右孩子时
  3. 要删除的结点有左、右孩子结点

看起来有待删除节点有4中情况,实际情况:

  • 要删除的结点无孩子结点时,直接删除

  • 要删除的结点只有左孩子或右孩子时,将左孩子或右孩子给父亲

    1. 要删除的结点可能是父亲的左孩子或者是右孩子,有2*2种情况(要删除的结点是父亲的左孩子或右孩子)

    2. 左右孩子都是空时,也满足情况,因此可以合并无孩子结点情况

    3. 在1的前提下,恰好是根节点,也是一种情况(让另外一个孩子做根即可)

  • 要删除的结点有左右孩子(子树)时,需要找一个既要比左子树大也要比右子树小的节点来补上.

    根据递归定义得知,只有左孩子的最右结点和右孩子的最左结点符合条件,二选一即可

    当选择使用右孩子的最左结点时,有以下三种情况(与是不是根无关)

    1. 要删除的结点的右子树的最小结点恰好是要删除结点的右孩子.

    2. 要删除的结点的右子树的最小结点没有右孩子.

    3. 要删除的结点的右子树的最小结点有右孩子

      (上图举例分析)

代码实现

BSTree.hpp

template<class K>
struct BSTreeNode {
BSTreeNode<K>* _left;
BSTreeNode<K>* _right;
K _key; BSTreeNode(K key)
:_key(key),_left(nullptr),_right(nullptr)
{}
}; template<class K>
class BSTree {
public:
using Node = BSTreeNode<K>;
BSTree() = default;
BSTree(const BSTree& bst) {
_root = Copy(bst._root);
}
BSTree<K>& operator=(BSTree bst) { //拷贝复用
swap(_root,bst.root);
return *this;
}
~BSTree() {
Destroy(_root);
} public:
bool Insert(const K& key) {
if (_root == nullptr) {
_root = new Node(key);
_root->_key = key;
return true;
}
BSTreeNode<K>* cur = _root;
BSTreeNode<K>* parent = _root;
while (cur) {
if (key < cur->_key) {
parent = cur;
cur = cur->_left;
}
else if (key > cur->_key) {
parent = cur;
cur = cur->_right;
}
else {
return false;
}
}
//走出循环,说明树中不存在该节点, 可以插入
cur = new BSTreeNode<K>(key);
if (key < parent->_key) { parent->_left = cur;
}
else {
parent->_right = cur;
}
return true;
} bool Find(const K& key) {
if (_root == nullptr) return false; Node* cur = _root;
while (cur) {
if (key < cur->_key) {
cur = cur->_left;
}
else if (key > cur->_key) {
cur = cur->_right;
}
else {
return true;
}
}
// 从循环出来,说明没找着
return false;
} bool Erase(const K& key) {
if (_root == nullptr) return false; Node* cur = _root;
Node* parent = _root; while (cur) {
if (key < cur->_key) {
parent = cur;
cur = cur->_left;
}
else if (key > cur->_key) {
parent = cur;
cur = cur->_right;
}
else {
//没有左孩子
if (cur->_left == nullptr) {
if (cur == _root) {
_root = cur->_right;
}
else if (parent->_left == cur) {
parent->_left = cur->_right;
}
else {
parent->_right = cur->_right;
}
delete cur;
return true;
}
//没有右孩子
else if (cur->_right == nullptr) {
if (cur == _root) {
_root = cur->_left;
}
if (parent->_left == cur) {
parent->_left = cur->_left;
}
else {
parent->_right = cur->_left;
}
delete cur;
return true;
}
//有左右孩子
else {
//找右孩子(子树)的最小结点/最左结点
Node* rightMin = cur->_right; //明确不为空
Node* rightMinParent = cur;
while (rightMin->_left) {
rightMinParent = rightMin;
rightMin = rightMin->_left;
}
// 删除右子树最小结点有3种情况(与是不是根无关)
//1. 要删除的结点右子树最小结点恰好是自己的右孩子.
//2. 要删除的结点的右孩子的左子树的最左结点没有右孩子.
//3. 要删除的结点的右孩子的左子树的最左结点有右孩子.
//结论解析: 复用删除单结点代码,进行删除rightMin即可
K tmp = rightMin->_key;
Erase(rightMin->_key); //只能从根开始遍历,性能损失,但是二分查找很快,损失不大(理想情况,BST只学习用)
cur->_key = tmp;
return true;
} //有左右孩子的情况
} //找到了_继续处理的过程
}//循环找的过程
//循环结束,说明没找到
return false;
}//Erase [end] void InOrder() {
_InOrder(_root);
std::cout << std::endl;
} bool InsertR(const K& key) {
_InsertR(_root, key);
} bool EraseR(const K& key) {
return _EraseR(_root,key);
} private: //此处返回值不能使用指针引用,虽然一定情况下可以使用(不推荐),至少目前不能引用空值.
Node* Copy(const Node* root) {
if (root == nullptr) {
return nullptr;
}
Node* newRoot = new Node(root->_key);
newRoot->_left = Copy(root->_left);
newRoot->_right = Copy(root->_right);
return newRoot;
} //用不用引用无所谓,好习惯做到底
//(析构子节点时,父节点两个成员会成为垂悬指针,但是接下来父亲也要析构了,指针变量也随之回收)
void Destroy(Node*&root) {
if (root == nullptr) {
return ;
}
Destroy(root->_left);
Destroy(root->_right); std::cout<<root->_key<<" ";
delete root; //释放加自动置空
} //练习递归+引用 -- 代码更加简洁
bool _EraseR(Node*& root, const K&key) {
//走到空,说明没找到,返回false
if (root == nullptr) {
return false;
} //大于走右边,小于走左边
if (key > root->_key) {
return _EraseR(root->_right,key);
}
else if(key<root->_key) {
return _EraseR(root->_left,key);
}
//找到了
else {
if (root->_left == nullptr) {
Node* del = root;
root = root->_right;
delete del;
return true;
}
else if (root->_right == nullptr) {
Node* del = root;
root = root->_left;
delete del;
return true;
}
//有左右孩子
else {
Node* leftMax = root->_left;
//找左子树最大结点
while (leftMax->_right) {
leftMax = leftMax->_right;
}
std::swap(root->_key, leftMax->_key);
return _EraseR(root->_left, key); //直接从左孩子开始递归删除.
}
} } //练习递归+引用指针的玩法,仅练习
bool _InsertR(Node*& root, const K& key) { //引用的妙用,跨栈帧直接访问实参
if (root == nullptr) {
root == new Node(key);
return true;
}
if (key == root->_key) return false;
return (key > root->_key) ? _InsertR(root->_right, key) : _InsertR(root->_left, key);
} void _InOrder(Node* root) {
if (root == nullptr) return;
_InOrder(root->_left);
std::cout << root->_key << " ";
_InOrder(root->_right);
} private:
BSTreeNode<K>* _root = nullptr;
};

test.cc

void test() {
int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
BSTree<int> bst;
for (int i : a) {
bst.Insert(i);
}
bst.InOrder(); ////Find
//std::cout << std::boolalpha << bst.Find(8) << std::endl; //true
//std::cout << std::boolalpha << bst.Find(9) << std::endl; //false BSTree<int> cp(bst);
cp.InOrder(); //测试两孩子的三种情况即可
bst.Erase(8); //1. 要删除的结点的右子树的最小结点恰好是要删除结点的右孩子.
bst.Erase(10); //2. 要删除的结点的右子树的最小结点没有右孩子
bst.Insert(5); //构造有右孩子的最小结点
bst.Erase(3); //3. 要删除的结点的右子树的最小结点有右孩子
bst.Erase(4);
bst.Erase(7);
bst.Erase(1);
bst.Erase(14);
bst.Erase(13);
bst.Erase(6);
bst.Erase(5);
bst.InOrder(); //禁止显式调用析构函数 --> 双重释放
//bst.~BSTree();
//cp.~BSTree(); } int main() {
test();
}

BST 二叉搜索树 BinarySearchTree C++实现(递归/非递归)的更多相关文章

  1. 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历

    二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历   二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则 ...

  2. 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历

    二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根 ...

  3. 数据结构中很常见的各种树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- ...

  4. [LeetCode] Serialize and Deserialize BST 二叉搜索树的序列化和去序列化

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  5. 二叉搜索树BinarySearchTree(C实现)

    头文件—————————————————————————————— #ifndef _BINARY_SEARCH_TREE_H_ #define _BINARY_SEARCH_TREE_H_ #inc ...

  6. [LeetCode] Minimum Absolute Difference in BST 二叉搜索树的最小绝对差

    Given a binary search tree with non-negative values, find the minimum absolute difference between va ...

  7. bst 二叉搜索树简单实现

    //数组实现二叉树: // 1.下标为零的元素为根节点,没有父节点 // 2.节点i的左儿子是2*i+1:右儿子2*i+2:父节点(i-1)/2: // 3.下标i为奇数则该节点有有兄弟,否则又左兄弟 ...

  8. 数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树 ...

  9. Leetcode938. Range Sum of BST二叉搜索树的范围和

    给定二叉搜索树的根结点 root,返回 L 和 R(含)之间的所有结点的值的和. 二叉搜索树保证具有唯一的值. 示例 1: 输入:root = [10,5,15,3,7,null,18], L = 7 ...

  10. 浅析BST二叉搜索树

    2020-3-25 update: 原洛谷日报#2中代码部分出现一些问题,详情见此帖.并略微修改本文一些描述,使得语言更加自然. 2020-4-9 update:修了一些代码的锅,并且将文章同步发表于 ...

随机推荐

  1. 【FAQ】HarmonyOS SDK 闭源开放能力 —Map Kit(2)

    1.问题描述: 能否设置点击地图,地图标记上的文字不消失? 解决方案: 你好,这个功能设计本身就是点击屏幕marker的信息窗消失:如果用户只是想信息窗中的文字一直展示,可以不用信息窗实现 ,建议可以 ...

  2. 解决keil5仿真错误:Encountered an improper argument

    --- title: 解决keil5仿真错误:Encountered an improper argument date: 2020-06-18 03:13:18 categories: tags: ...

  3. day01小程序快速入门

    这几天正式开始微信小程序的修炼了,就目前而言来看简直就是vue和react的结合体,所以在学小程序前,先把框架熟悉还是挺有用的. 一.简介 1.1与普通网页区别 二.第一个小程序 需要注册小程序开发账 ...

  4. 光伏储能电厂设备连接iec61850平台解决方案

    在当今日益发展的电力系统中,光伏储能技术以其独特的优势逐渐崭露头角,成为可再生能源领域的重要组成部分.而在光伏储能系统的运行与监控中,通信协议的选择与实现则显得至关重要.本文将重点介绍光伏储能系统中的 ...

  5. ABC195E

    其实我们发现很多博弈论的动态规划都是从后往前的,比如过河卒和本题. 这是因为从某种角度上来说这些动态规划有后效性而无前效性. 所以设计状态 \(dp_{i,j}\) 表示第 \(i\) 次操作 \(T ...

  6. P9376 题解

    首先考虑怎么暴力. 考虑把每个数进行 \(B\) 进制分解,然后我们惊奇的发现这两个操作就是把最低位去掉和往最低位后面插入一个数. 然后我们顺藤摸瓜,把每个数的分解扔到 Trie 树上,我们发现我们要 ...

  7. ubuntu20 python3 安装 easysnmp

    前言 最近在 ubuntu20 上通过 pip3 安装 easysnmp,安装失败,系统提示:net-snmp/net-snmp-config.h: No such file or directory ...

  8. yb课堂之高并发项目必备利器之分布式缓存和本地缓存 《十九》

    什么是缓存? 程序经常要调用的对象存储在内存中,方便其使用时可以快速调用,不必去数据库或者其他持久化设备中查询,主要就是提高性能 DNS.前端缓存.代理服务器缓存Nginx.应用程序缓存(本地缓存.分 ...

  9. eclipse取消默认工作空间的两种方法

    对于eclipse的默认的工作空间,如果不需要正常切换workspace的用户很方便,打开eclipse便自动进入默认的工作空间.而如果用户经常在多个workspace之间切换的话,启动eclipse ...

  10. mysql 删除数据表报错 表删除时 Cannot delete or update a parent row: a foreign key constraint fails 异常处理

    mysql 删除数据表报错 表删除时 Cannot delete or update a parent row: a foreign key constraint fails 异常处理 MySQL报错 ...