NC19987 [HAOI2012]ROAD
题目
题目描述
C国有n座城市,城市之间通过m条单向道路连接。一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小。两条最短路不同,当且仅当它们包含的道路序列不同。我们需要对每条道路的重要性进行评估,评估方式为计算有多少条不同的最短路经过该道路。现在,这个任务交给了你。
输入描述
第一行包含两个正整数n、m
接下来m行每行包含三个正整数u、v、w,表示有一条从u到v长度为w的道路
输出描述
输出应有m行,第i行包含一个数,代表经过第i条道路的最短路的数目对1000000007取模后的结果
示例1
输入
4 4
1 2 5
2 3 5
3 4 5
1 4 8
输出
2
3
2
1
备注
30% 的数据满足:\(n\leq 15, m\leq 30\) 。
60% 的数据满足:\(n\leq 300, m\leq 1000\) 。
100% 的数据满足:\(n\leq 1500, m\leq 5000, w\leq 10000\) 。
题解
知识点:最短路,计数dp,DAG上dp。
为了求出每条边被最短路经过的次数,我们先以每个点出发考虑。
对于某点 \(i\) 为源点,经过一条边 \(u \to v\) 的最短路条数,可以分解为求 \(u\) 为终点的最短路条数,以及 \(v\) 为起点的最短路条数,最后乘在一起就是以 \(i\) 为源点经过这条边的最短路条数。以下是具体步骤:
- 先求出以 \(u\) 为终点的最短路条数,可以通过跑最短路时求出。对于一条边 \(u\to v\) ,若 \(dis[v] > dis[u] + w\) ,则 \(dp[v] = dp[u]\) ;若 \(dis[v] = dis[u] + w\) ,则 \(dp[v] = dp[v] + dp[u]\) 。
- 随后求出以 \(v\) 为起点的最短路条数,可以从 \(i\) 自底向上dfs求出,。因为最短路图一定是DAG,所以可以进行DAG上dp。对于某点 \(u\) 的下一个节点 \(v_i\),如果边 $ u \to v_i$ 在最短路上,则先求出以 \(v_i\) 为起点(包括自己为终点,所以初始化 \(dpv[v] = 1\))最短路条数 \(dpv[v_i]\) ,随后可以求出 \(dpv[u] =1+ \sum dpv[v_i]\) ,即以 \(u\) 为起点最短路条数。如果某点以及被计算过了,那就跳过。
- 在第二步的同时,我们得到了边 \(u \to v\) 的 \(dp[u]\) 和 \(dpv[v]\) 。那么,这条边以 \(i\) 为源点的答案贡献是 \(dp[u] \cdot dpv[v]\) 。
对每个点都求一遍,累加每条边的贡献即可。
时间复杂度 \(O(n(n+m)\log m)\)
空间复杂度 \(O(n+m)\)
代码
#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7;
const int N = 1507, M = 5007;
struct edge {
int v, nxt, w;
}e[M];
int h[N], idx;
void add(int u, int v, int w) {
e[++idx] = { v,h[u],w };
h[u] = idx;
}
bool vis[N];
int dis[N];
int dp[N];///起点到i点的最短路总数
struct node {
int v, w;
friend bool operator<(const node &a, const node &b) {
return a.w > b.w;
}
};
priority_queue<node> pq;
void dijkstra(int s) {
dis[s] = 0;
dp[s] = 1;
pq.push({ s,0 });
while (!pq.empty()) {
int u = pq.top().v;
pq.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = h[u];i;i = e[i].nxt) {
int v = e[i].v, w = e[i].w;
if (dis[v] > dis[u] + w) {
dis[v] = dis[u] + w;
dp[v] = dp[u];
pq.push(node{ v,dis[v] });
}
else if (dis[v] == dis[u] + w) {
dp[v] = (dp[u] + dp[v]) % mod;
}
}
}
}
int dpv[N];///i点把其他点作为终点的最短路总数
int ans[M];
void dfs(int u) {
if (dpv[u]) return;
dpv[u] = 1;///自己作为终点的一种
for (int i = h[u];i;i = e[i].nxt) {
int v = e[i].v, w = e[i].w;
if (dis[v] == dis[u] + w) {
dfs(v);
dpv[u] = (dpv[u] + dpv[v]) % mod;
ans[i] = (ans[i] + 1LL * dp[u] * dpv[v]) % mod;
}
}
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
for (int i = 1;i <= m;i++) {
int u, v, w;
cin >> u >> v >> w;
add(u, v, w);
}
for (int i = 1;i <= n;i++) {
for (int j = 1;j <= n;j++) vis[j] = dp[j] = dpv[j] = 0, dis[j] = 0x3f3f3f3f;
dijkstra(i);
dfs(i);
}
for (int i = 1;i <= m;i++) cout << ans[i] << '\n';
return 0;
}
NC19987 [HAOI2012]ROAD的更多相关文章
- BZOJ2750: [HAOI2012]Road
2750: [HAOI2012]Road Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 261 Solved: 113[Submit][Status ...
- BZOJ 2750: [HAOI2012]Road( 最短路 )
对于每个点都跑最短路, 然后我们得到了个DAG, 在这DAG上更新每条边的答案. 考虑e(u, v)∈DAG对答案的贡献: 假设从S到u得路径数为A[u], 从v出发到达任意点的路径数为B[v], ...
- [HAOI2012]Road
2750: [HAOI2012]Road Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 728 Solved: 349[Submit][Status ...
- bzoj 2750: [HAOI2012]Road
Description C国有n座城市,城市之间通过m条单向道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它们包含的道路序列不同.我 ...
- bzoj 2750: [HAOI2012]Road【spfa+dfs】
枚举起点做spfa,然后一条边在最短路上的条件是dis[e[i].to]==dis[u]+e[i].va,所以每次spfa完之后,dfs出a[i]表示经过i点的最短路的起点数,b[i]表示经过i点的最 ...
- 【BZOJ】【2750】【HAOI2012】Road
最短路+拓扑序DP orz zyf & lyd 统计每条边在多少条最短路径上……其实可以统计 有多少条最短路径经过了x,以及y出发到达任意一个结束点有多少种走法(沿最短路) 我们可以用Dijk ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- BZOJ2752: [HAOI2012]高速公路(road)
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 608 Solved: 199[Submit][ ...
- BZOJ 2752: [HAOI2012]高速公路(road)( 线段树 )
对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 ----------- ...
- 【线段树】BZOJ2752: [HAOI2012]高速公路(road)
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1621 Solved: 627[Submit] ...
随机推荐
- KVM 核心功能:CPU 虚拟化
1 vCPU 简介 CPU 负责计算机程序指令的执行.QEMU-KVM 提供对虚拟机 CPU 的模拟,对于虚拟机来说,其拥有的 CPU 是真实的, 和物理 CPU 没有区别. 实际上,虚拟机在 hos ...
- Tomcat 与 JVM 中classpath的理解和设置总结
本文为博主原创,转载请注明出处: 1.介绍 classpath是java运行时环境搜索类和其他资源文件(比如jar\zip等资源)的路径.类路径告诉JDK工具和应用程序在哪里可以找到第三方和用户定义的 ...
- Keep English Level-01
state -- 声称,宣称,国家,政府 state-owned -- 国有的 He stated that "hell will break loose,politically and m ...
- P5729 【深基5.例7】工艺品制作
1.题目介绍 [深基5.例7]工艺品制作 题目描述 现有一个长宽高分别为 \(w,x,h\) 组成的实心玻璃立方体,可以认为是由 \(1\times1\times1\) 的数个小方块组成的,每个小方块 ...
- JMS微服务项目模板
项目模板下载地址 vs2022模板:JMS.MicroServiceProjectTemplate2022.zip vs2019模板:JMS.MicroServiceHost.zip 说明 把压缩包解 ...
- linux-目录树
- [转帖]使用 BR 命令行备份恢复
TiDB试用 来源:TiDB 浏览 404 扫码 分享 2021-04-20 20:49:42 使用 BR 命令行进行备份恢复 BR 命令行描述 命令和子命令 常用选项 使用 BR 命令行备份集群数 ...
- [转帖]clickHouse单机模式安装部署(RPM安装)
关于版本和系统的选择 操作系统:Centos-7 ClickHouse: rpm 在安装,20.x 安装前的准备 CentOS7 打开文件数限 在 /etc/security/limits.conf ...
- [转帖]一次 Java 进程 OOM 的排查分析(glibc 篇)
https://juejin.cn/post/6854573220733911048 遇到了一个 glibc 导致的内存回收问题,查找原因和实验的的过程是比较有意思的,主要会涉及到下面这些: Linu ...
- [转帖]Redis命令详解:Keys
https://jackeyzhe.github.io/2018/09/22/Redis%E5%91%BD%E4%BB%A4%E8%AF%A6%E8%A7%A3%EF%BC%9AKeys/ 介绍完Re ...