4.elasticsearch中聚合查询
elasticsearch聚合查询
什么是聚合,就是目的不是查询具体的文档,而是查询文档的相关性,此外还可以对聚合的文档在按照其他维度再聚合。
包含以下四种聚合
- Bucket Aggregation 一些列满足特定条件的文档的集合
- terms 对某个字段统计每个不同的内容,以及出现文档的个数
- range 某个范围内文档的个数
- Metric Aggregation 一些数学运算,可以对文档字段进行统计分析
- 输出一个值,min/max/sum/avg/cardinality
- 输出多个值,stats/percentiles/percentile_ranks
- Pipeline Aggregation 对其他的聚合结果进行二次聚合(不是对文档进行聚合)
- Matrix Aggregation 支持对多个字段的操作并提供一个结果矩阵
#按照目的地进行分桶统计 Bucket Aggregation
GET kibana_sample_data_flights/_search
{
"size": 0,
"aggs":{
"flight_dest":{
"terms":{
"field":"DestCountry"
}
}
}
}
#查看航班目的地的统计信息,增加平均,最高最低价格 Metric Aggregation
GET kibana_sample_data_flights/_search
{
"size": 0,
"aggs":{
"flight_dest":{
"terms":{
"field":"DestCountry"
},
"aggs":{
"avg_price":{
"avg":{
"field":"AvgTicketPrice"
}
},
"max_price":{
"max":{
"field":"AvgTicketPrice"
}
},
"min_price":{
"min":{
"field":"AvgTicketPrice"
}
}
}
}
}
}
#价格统计信息+天气信息 Metric Aggregation
GET kibana_sample_data_flights/_search
{
"size": 0,
"aggs":{
"flight_dest":{
"terms":{
"field":"DestCountry"
},
"aggs":{
"stats_price":{
"stats":{
"field":"AvgTicketPrice"
}
},
"wather":{
"terms": {
"field": "DestWeather",
"size": 5
}
}
}
}
}
}
# 平均工资最低的工作类型
GET employees/_search
{
"size": 0,
"aggs": {
"jobs": {
"terms": {
"field": "job.keyword",
"size": 10
},
"aggs": {
"avg_salary": {
"avg": {
"field": "salary"
}
}
}
},
"min_salary_by_job":{
"min_bucket": {
"buckets_path": "jobs>avg_salary"
}
}
}
}
聚合的作用范围
默认聚合范围是全文,但是如果有query查询,那么聚合的范围就是query查询的结果
# Query
GET employees/_search
{
"size": 0,
"query": {
"range": {
"age": {
"gte": 20
}
}
},
"aggs": {
"jobs": {
"terms": {
"field":"job.keyword"
}
}
}
}
如果有聚合中有filter过滤,那么其子聚合的作用范围是filter过滤的文档,但是和此聚合并列的聚合,不受filter影响
#Filter
GET employees/_search
{
"size": 0,
"aggs": {
"older_person": {
"filter":{
"range":{
"age":{
"from":35
}
}
},
"aggs":{
"jobs":{
"terms": {
"field":"job.keyword"
}
}
}},
"all_jobs": {
"terms": {
"field":"job.keyword"
}
}
}
}
我们可以指定一些作用范围,关键字是 post_filter、global
#Post field. 一条语句,找出所有的job类型。还能找到聚合后符合条件的结果
GET employees/_search
{
"aggs": {
"jobs": {
"terms": {
"field": "job.keyword"
}
}
},
"post_filter": {
"match": {
"job.keyword": "Dev Manager"
}
}
}
#global global会无视query条件,对全部文档进行统计
GET employees/_search
{
"size": 0,
"query": {
"range": {
"age": {
"gte": 40
}
}
},
"aggs": {
"jobs": {
"terms": {
"field":"job.keyword"
}
},
"all":{
"global":{},
"aggs":{
"salary_avg":{
"avg":{
"field":"salary"
}
}
}
}
}
}
聚合的排序
默认聚合是按照buckets的文档数进行排序的,我们也可以自己指定排序字段
#按照返回结果中bucket里的字段排序
#count and key
GET employees/_search
{
"size": 0,
"query": {
"range": {
"age": {
"gte": 20
}
}
},
"aggs": {
"jobs": {
"terms": {
"field":"job.keyword",
"order":[
{"_count":"asc"},
{"_key":"desc"}
]
}
}
}
}
#按照子聚合结果排序,如果单值输出,不用指定子聚合的字段
#count and key
GET employees/_search
{
"size": 0,
"aggs": {
"jobs": {
"terms": {
"field":"job.keyword",
"order":[ {
"avg_salary":"desc"
}]
},
"aggs": {
"avg_salary": {
"avg": {
"field":"salary"
}
}
}
}
}
}
#按照子聚合的字段排序,如果多值输出,需指定子聚合结果的字段
#count and key
GET employees/_search
{
"size": 0,
"aggs": {
"jobs": {
"terms": {
"field":"job.keyword",
"order":[ {
"stats_salary.min":"desc"
}]
},
"aggs": {
"stats_salary": {
"stats": {
"field":"salary"
}
}
}
}
}
}
聚合的精准度问题
我们需要关注返回结果的两个字段
- doc_count_error_upper_bound
- 被遗漏的term分桶,包含的文档,有可能的最大值
- sum_other_doc_count
- 除了返回结果bucket的terms以外,其他terms的文档总数(总数-返回的总数)
doc_count_error_upper_bound:例如,在取分桶后的前三个时,这里的值就是每个分片最后一个的文档数的和
sum_other_doc_count:所有文档数-分桶展示出来的文档总数
如何解决terms不准的问题
- terms聚合分析不准的原因,数据分散在多个分片上,coordinating node无法获取数据全貌,
- 解决方案一、当数据量不大时,设置primary shard为1,实现准确性
- 解决方案二、在分布式数据上,设置shard_size参数,提高精准度
- 就是每次从shard上获取的比你size指定的更多的数据,提升准确率,你让我取前三,我分别取前6个,然后在组合起来取前三。
- shard size大小设定 size*1.5+10
GET my_flights/_search
{
"size": 0,
"aggs": {
"weather": {
"terms": {
"field":"OriginWeather",
"size":1,
"shard_size":10,
"show_term_doc_count_error":true//在返回结果中显示doc_count_error_upper_bound
}
}
}
}
4.elasticsearch中聚合查询的更多相关文章
- Elasticsearch(9) --- 聚合查询(Bucket聚合)
Elasticsearch(9) --- 聚合查询(Bucket聚合) 上一篇讲了Elasticsearch聚合查询中的Metric聚合:Elasticsearch(8) --- 聚合查询(Metri ...
- Elasticsearch系列---聚合查询原理
概要 本篇主要介绍聚合查询的内部原理,正排索引是如何建立的和优化的,fielddata的使用,最后简单介绍了聚合分析时如何选用深度优先和广度优先. 正排索引 聚合查询的内部原理是什么,Elastich ...
- Elasticsearch(8) --- 聚合查询(Metric聚合)
Elasticsearch(8) --- 聚合查询(Metric聚合) 在Mysql中,我们可以获取一组数据的 最大值(Max).最小值(Min).同样我们能够对这组数据进行 分组(Group).那么 ...
- ElasticSearch实战系列五: ElasticSearch的聚合查询基础使用教程之度量(Metric)聚合
Title:ElasticSearch实战系列四: ElasticSearch的聚合查询基础使用教程之度量(Metric)聚合 前言 在上上一篇中介绍了ElasticSearch实战系列三: Elas ...
- java操作elasticsearch实现聚合查询
1.max 最大值 //max 求最大值 @Test public void test30() throws UnknownHostException{ //1.指定es集群 cluster.name ...
- elasticsearch 简单聚合查询示例
因为懒癌犯了,查询语句使用的截图而不是文字,导致了发布随笔的时候提示少于150字的随笔不能发布. 我就很郁闷了. 下面的查询都是前段时间工作中使用过的查询语句. 开始的时候是使用nodejs构建es查 ...
- elasticsearch相关聚合查询示例
索引(index):logstash-nginx-*,type:nginx_access 请求路径: 1.按照某个字段进行分组统计访问量 { "query": { "bo ...
- java使用elasticsearch分组进行聚合查询(group by)-项目中实际应用
java连接elasticsearch 进行聚合查询进行相应操作 一:对单个字段进行分组求和 1.表结构图片: 根据任务id分组,分别统计出每个任务id下有多少个文字标题 .SQL:select id ...
- java操作elasticsearch实现前缀查询、wildcard、fuzzy模糊查询、ids查询
1.前缀查询(prefix) //prefix前缀查询 @Test public void test15() throws UnknownHostException { //1.指定es集群 clus ...
- Elasticsearch 常用基本查询
安装启动很简单,参考官网步骤:https://www.elastic.co/downloads/elasticsearch 为了介绍Elasticsearch中的不同查询类型,我们将对带有下列字段的文 ...
随机推荐
- 关于.Net 6.0 在Linux ,Docker容器中,不安装任何依赖就生成图形验证码!!!!!!!!!!!
在.Net Framework时代,我们生成验证码大多都是用System.Drawing. 在.Net 6中使用也是没有问题的. 但是,System.Drawing却依赖于Windows GDI+. ...
- qiankun微前端实践
为什么要使用微前端 微前端架构具备以下几个核心价值: 技术栈无关 主框架不限制接入应用的技术栈,微应用具备完全自主权 独立开发.独立部署 微应用仓库独立,前后端可独立开发,部署完成后主框架自动完成同步 ...
- vue 甘特图(三):甘特图右侧内容拖动展示
vue3 甘特图(三):甘特图右侧内容拖动展示内容 解决因多个项目周期跨度不同,在一页屏幕里展示不完全,需要通过拖动甘特图下方的滚动条,去查看对应时间段内的内容 拖拽滚动视图,展示对应时间甘特图 构思 ...
- 使用playwright爬取魔笔小说网站并下载轻小说资源
一.安装python 官网 下载python3.9及以上版本 二.安装playwright playwright是微软公司2020年初发布的新一代自动化测试工具,相较于目前最常用的Selenium,它 ...
- 【matplotlib 实战】--百分比柱状图
百分比堆叠式柱状图是一种特殊的柱状图,它的每根柱子是等长的,总额为100%.柱子内部被分割为多个部分,高度由该部分占总体的百分比决定. 百分比堆叠式柱状图不显示数据的"绝对数值", ...
- 01-spfile和pfile的区别,生成,加载和修复
oracle数据库的配置文件指的是系统在启动到"nomount"阶段需要加载的文件,也叫做pfile或者spfile,但是其实pfile和spfile是不同的文件. 不同的数据库配 ...
- 栩栩如生,音色克隆,Bert-vits2文字转语音打造鬼畜视频实践(Python3.10)
诸公可知目前最牛逼的TTS免费开源项目是哪一个?没错,是Bert-vits2,没有之一.它是在本来已经极其强大的Vits项目中融入了Bert大模型,基本上解决了VITS的语气韵律问题,在效果非常出色的 ...
- nginx学习(基本概念、配置和命令、反向代理、负载均衡、动静分离)
之前都只会照着网上的nginx配置和代码什么的直接拿过来用,但是没系统学习过,所以来系统学习一下nginx内容. 建议服务器不要关闭防火墙,按需开启端口就好,然后云服务器也要设置SSH密钥,安全性高一 ...
- 网页全终端h5浏览器视频流解决方案RTSP/FLV/HLS
背景 项目上需要基于视频巡检,在线勘查填写定制表单,降低巡检成本. 本文着重讲前端部分视频流展示解决方案. 调研 流媒体(streaming media)是指将一连串的媒体数据压缩后,经过网上分段发送 ...
- 【scipy 基础】--图像处理
SciPy库本身是针对科学计算而不是图像处理的,只是图像处理也包含了很多数学计算,所以Scipy也提供了一个专门的模块ndimage用于图像处理. ndimage模块提供的功能包括输入/输出图像.显示 ...