定义

最大公约数即为 Greatest Common Divisor,常缩写为 gcd。

一组整数的公约数,是指同时是这组数中每一个数的约数的数。

一组整数的最大公约数,是指所有公约数里面最大的一个。

那么如何求最大公约数呢?我们先考虑两个数的情况。

欧几里得算法

过程

如果我们已知两个数 \(a\) 和 \(b\),如何求出二者的最大公约数呢?

不妨设\(a > b\)

我们发现如果 b 是 a 的约数,那么 b 就是二者的最大公约数。 下面讨论不能整除的情况,即\(a = b * q + r\),

其中\(r < b\)

我们通过证明可以得到\(gcd(a, b) = gcd(b, amodb)\),过程如下:

设 \(a=bk+c\),显然有 \(c=a \bmod b\)。设 \(d \mid a\),\(~d \mid b\),则\(c=a-bk\), \(\frac{c}{d}=\frac{a}{d}-\frac{b}{d}k\)。

由右边的式子可知\(\frac{c}{d}\) 为整数,即 \(d \mid c\),所以对于 \(a\),\(b\) 的公约数,它也会是 \(b\),\(a \bmod b\) 的公约数。

反过来也需要证明:

设 \(d \mid b\),\(~d\mid (a \bmod b)\),我们还是可以像之前一样得到以下式子

\(\frac{a\bmod b}{d}=\frac{a}{d}-\frac{b}{d}k,~\frac{a\bmod b}{d}+\frac{b}{d}k=\frac{a}{d}\)。

因为左边式子显然为整数,所以\(\frac{a}{d}\) 也为整数,即 d \mid a,所以 b,a\bmod b 的公约数也是 a,b 的公约数。

既然两式公约数都是相同的,那么最大公约数也会相同。

所以得到式子\(gcd(a, b) = gcd(b, amodb)\)

既然得到了 \(\gcd(a, b) = \gcd(b, r)\),这里两个数的大小是不会增大的,那么我们也就得到了关于两个数的最大公约数的一个递归求法。

实现

int gcd(int a, int b) {
if(b == 0) return a;
return gcd(b, a % b);
}

最小公倍数

int gcd(int a, int b) {
if(b == 0) return a;
return gcd(b, a % b);
}
int lcm = a * b / gcd(a, b);

C++欧几里得算法求最大公约数和最小公倍数的更多相关文章

  1. 欧几里得算法求最大公约数(gcd)

    关于欧几里得算法求最大公约数算法, 代码如下: int gcd( int a , int b ) { if( b == 0 ) return a ; else gcd( b , a % b ) ; } ...

  2. 浅谈欧几里得算法求最大公约数(GCD)的原理及简单应用

    一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约 ...

  3. 欧几里得算法求最大公约数-《Algorithms Fourth Edition》第1章

    最大公约数(Greatest Common Divisor, GCD),是指2个或N个整数共有约数中最大的一个.a,b的最大公约数记为(a, b).相对应的是最小公倍数,记为[a, b]. 在求最大公 ...

  4. 关于欧几里得算法求最大公约数,即OJ1029的参考解法

    #include <stdio.h> int main(int argc, char *argv[]) { int a,b,c; scanf("%d %d",& ...

  5. c语言求最大公约数和最小公倍数

    求最大公约数和最小公倍数 假设有两个数a和b,求a,b的最大公约数和最小公倍数实际上是一个问题,得出这两个数的最大公约数就可以算出它们的最小公倍数. 最小公倍数的公式是 a*b/m m为最大公约数 因 ...

  6. JAVA 基础编程练习题6 【程序 6 求最大公约数及最小公倍数】

    6 [程序 6 求最大公约数及最小公倍数] 题目:输入两个正整数 m 和 n,求其最大公约数和最小公倍数. 程序分析:利用辗除法. package cskaoyan; public class csk ...

  7. c/c++求最大公约数和最小公倍数

    最大公约数GCD(Greatest Common Divisor) 最常见的求两个数的最大公约数的算法是辗转相除法,也叫欧几里得算法 该算法的c++语言实现如下: #include<iostre ...

  8. Java求最大公约数和最小公倍数

    最大公约数(Greatest Common Divisor(GCD)) 基本概念 最大公因数,也称最大公约数.最大公因子,指两个或多个整数共有约数中最大的一个.a,b的最大公约数记为(a,b),同样的 ...

  9. c语言求最大公约数和最小公倍数(转)

    最大公约数与最小公倍数的求解是很多初学C的人所面临的一道问题.当然这道问题并不难解答,也有很多人已经写过相关的博客,我在此书写此篇博客,一是为了让自己能够夯实基础,另外就是希望能够帮到和我一样的初学者 ...

  10. c语言:辗转相除法求最大公约数、最小公倍数

    辗转相除法,又称欧几里得算法.两个正整数a和b(a>b),它们的最大公约数等于余数c和较小的数b之间的最大公约数.最小公倍数=两数之积/最大公约数 #include <stdio.h> ...

随机推荐

  1. 文心一言 VS chatgpt (11)-- 算法导论2.3 7题 3.1 4~5题

    四.2 ^ (n+1)=O(2 ^ n)成立吗? 2^(2n)=O(2 ^ n)成立吗? 文心一言: chatgpt: 第一个式子不成立,第二个式子成立. 2 ^ (n+1) = O(2 ^ n) 该 ...

  2. 2021-11-12:前 K 个高频元素。给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。提示:1 <= nums.length <=

    2021-11-12:前 K 个高频元素.给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素.你可以按 任意顺序 返回答案.提示:1 <= nums.length ...

  3. 2021-08-06:天际线问题。城市的天际线是从远处观看该城市中所有建筑物形成的轮廓的外部轮廓。给你所有建筑物的位置和高度,请返回由这些建筑物形成的 天际线 。每个建筑物的几何信息由数组 build

    2021-08-06:天际线问题.城市的天际线是从远处观看该城市中所有建筑物形成的轮廓的外部轮廓.给你所有建筑物的位置和高度,请返回由这些建筑物形成的 天际线 .每个建筑物的几何信息由数组 build ...

  4. 又一个开源便斩获 7k star 的新模型「GitHub 热点速览」

    Star 并不能代表什么,但是绝对能表示一个项目的受欢迎程度.就像刚开源一周就有 7k+ star 的新模型,输入文本 / 图像就能获得 3D 对象.除了这个新模型,本周还有一款新的 Web 3D 渲 ...

  5. 【GiraKoo】could not find UI helper 'git-credential-manager-ui'

    环境 Windows 11 git version 2.39.0.windows.1 TortoiseGit 现象 使用TortoiseGit执行git pull命令时,提示could not fin ...

  6. IIC通信协议

    1.IIC 通信协议简介 I2C 通讯协议(Inter-Integrated Circuit)是由 Phiilps 公司开发的, 由于它引脚少,硬件实现简单,可扩展性强,不需要 USART.CAN 等 ...

  7. C2简介

    C2简介 学习命令与控制的基本知识,帮助您成为更好的红队队员并简化您的下一次红队评估! thm:https://tryhackme.com/room/introtoc2 介绍 命令与控制 ( C2 ) ...

  8. 基于渗透的python

    Python for Pentesters 还记得开始学习编程的C,虽然淡忘,但思想仍在. 子域名枚举 request库 import pyfiglet import requests import ...

  9. JavaWeb编程面试题——Spring Framework

    引言 面试题==知识点,这里所记录的面试题并不针对于面试者,而是将这些面试题作为技能知识点来看待.不以刷题进大厂为目的,而是以学习为目的.这里的知识点会持续更新,目录也会随时进行调整. 关注公众号:编 ...

  10. 11. Mybatis的逆向工程

    正向工程:先创建 Java 实体类,由框架负责根据实体类生成数据库表. Hibernate 是支持正向工 程的. 逆向工程:先创建数据库表,由框架负责根据数据库表,反向生成如下资源: Java 实体类 ...