2.1 Linear Equations Picture

Row Picture

2 by 2 equations

Two equations, Two unknowns

\[\begin{matrix} x - 2y = 1 \\ 3x + 2y = 11 \end{matrix}
\]

The row picture shows two lines meeting at a single point(the solution).

3 by 3 equations

Three equations, Three unknowns

\[Ax=b \ \ => \ \ \begin{matrix} x + 2y + 3z = 6 \\ 2x + 5y + 2z = 4 \\ 6x - 3y + z = 2\end{matrix}
\]

The row picture shows three planes meeting at a single point.

Column Picture

2 by 2 equations

Two equations, Two unknowns

\[\begin{matrix} x - 2y = 1 \\ 3x + 2y = 11 \end{matrix} =>x\left[ \begin{matrix} 1\\ 3 \\ \end{matrix} \right] + y\left[ \begin{matrix} -2\\ 2 \\ \end{matrix} \right] =\left[\begin{matrix} 1 \\ 11 \end{matrix}\right] = b
\]

The column picture combines the column vectors on the left side to produce the vector b on the right side.

(The left side of the vector equation is a linear combination of the columns)

3 by 3 equations

Three equations, Three unknowns

\[\begin{matrix} x + 2y + 3z = 6 \\ 2x + 5y + 2z = 4 \\ 6x - 3y + z = 2 \end{matrix} =>x\left[ \begin{matrix} 1\\ 2\\6 \\ \end{matrix} \right] + y\left[ \begin{matrix} 2\\ 5 \\-3 \\ \end{matrix} \right] + z\left[ \begin{matrix} 3\\ 2 \\1 \\ \end{matrix} \right] =\left[\begin{matrix} 4 \\ 6 \\ 2\end{matrix}\right] = b
\]

The column picture combines three columns to produce b,the coefficients (x,y,z) = (0,0,2).

2.2 Elimination

2.2.1 Gaussian Elimination

  • Column 1 : Use the first equation to create zeros below the first pivot.
  • Column 2 : Use the new equation 2 to create zeros below the second pivot.
  • Column 3 to n : Keep going to find all n pivots and the upper triangular U.
2 by 2

Multiply equation 1 by 3, and Subtract from equation 2.

\[(Before) \ \ \begin{matrix} x - 2y = 1 \\ 3x + 2y = 11 \end{matrix} ==> (After) \ \ \begin{matrix} x - 2y = 1 \\ 8y = 8 \end{matrix}
\]

3 by 3
\[Ax = b \ ==> \ \begin{matrix} 2x + 4y - 2z = 2 \\ 4x + 9y - 3z = 8 \\ -2x-3y+7z=10 \end{matrix}
\]

Elimination Steps

step1 : Subtract 2 times equation 1 from equation 2.

\[\begin{matrix} 2x + 4y - 2z = 2 \\
\quad \quad \quad y + z = 4 \\
-2x-3y+7z=10 \end{matrix}
\]

step2 : Subtract -1 times equation 1 from equation 3.

\[\begin{matrix} 2x + 4y - 2z = 2 \\
\quad \quad \quad y + z = 4 \\
\quad \quad \quad \quad y+5z=12 \end{matrix}
\]

step3 : Subtract new equation 2 from new equation 3.

\[\quad \begin{matrix} 2x + 4y - 2z = 2 \\
\quad \quad \quad \quad y + z = 4 \\
\quad \quad \quad \quad \quad 4z = 8 \end{matrix}
==>Ux = c
\]

U is upper triangular.

Back substitution

z = 2 --> y = 2 --> x = -1

2.2.2 Elimination-Matrix

Elimination multiplies Ax=b by \(E_{21} , E_{31} , E_{41}, ..., E_{n1}\), then \(E_{32} , E_{42}, ..., E_{n2}\) and onward.

  • \(E =E_{21} ,..., E_{n1},..., E_{n2},...,E_{n(n-1)}\) , \(EA = [Ea_1...Ea_n]\)
  • Augmented matrix : \(E[A\ \ b] = [EA\ \ Eb]\)

example:

\[Ax = b \\
\Downarrow \\
\begin{matrix} 2x_1 + 4x_2 - 2x_3 = 2 \\ 4x_1 + 9x_2 - 3x_3 = 8 \\ -2x_1-3x_2+7x_3=10 \end{matrix} \\
\Downarrow \\
\left[ \begin{matrix} 2&4&-2 \\ 4&9&-3 \\ -2&-3&7 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 2\\8\\10 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 1&0&0 \\ -2&1&0 \\ 0&0&1 \end{matrix} \right]
\left[ \begin{matrix} 2&4&-2 \\ 4&9&-3 \\ -2&-3&7 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 1&0&0 \\ -2&1&0 \\ 0&0&1 \end{matrix} \right]
\left[ \begin{matrix} 2\\8\\10 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 2&4&-2 \\ 0&1&1 \\ -2&-3&7 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 2\\4\\10 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 1&0&0 \\ 0&1&0 \\ 1&0&1 \end{matrix} \right]
\left[ \begin{matrix} 2&4&-2 \\ 0&1&1 \\ -2&-3&7 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 1&0&0 \\ 0&1&0 \\ 1&0&1 \end{matrix} \right]
\left[ \begin{matrix} 2\\4\\10 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 2&4&-2 \\ 0&1&1 \\ 0&1&5 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 2\\4\\12 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 1&0&0 \\ 0&1&0 \\ 0&-1&1 \end{matrix} \right]
\left[ \begin{matrix} 2&4&-2 \\ 0&1&1 \\ 0&1&5 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 1&0&0 \\ 0&1&0 \\ 0&-1&1 \end{matrix} \right]
\left[ \begin{matrix} 2\\4\\12 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 2&4&-2 \\ 0&1&1 \\ 0&0&4 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 2\\4\\8 \end{matrix} \right] \\
\Downarrow Back \ \ substitution \\
x_3 = 2 , x_2 = 2, x_1 = -1
\]

2.3 Rules for Matrix Operations

2.3.1 Matrix Multiplication

Matrices A with n columns multiply matrices B with n rows : \(A_{m \times n} B_{n \times p} = C_{m \times p}\)

The regular way

The entry in row i and column j of AB is (row i of A) \(\cdot\) (column j of B): \((AB)_{ij}=a_{i1}b_{1j} + a_{i2}b_{2j}+...+a_{in}b_{nj}\)

\[\left[ \begin{matrix} * \\ a_{i1}&a_{i2}&...&a_{in} \\ * \\* \end{matrix} \right]
\left[ \begin{matrix} *&b_{1j}&*&*\\ &b_{2j}&&\ \\ &\vdots&& \\ &b_{nj}&& \end{matrix} \right]=
\left[ \begin{matrix} &&*&& \\ *&*&(AB)_{ij}&*&* \\ &&*&& \\&&*&& \end{matrix} \right]
\]
The column way

Each column of AB is a combination of the columns of A.

Matrix A times every column of B : \(A[b_1...b_p]=[Ab_1...Ab_p]\)

The row way

Every row of AB is a combination of the rows of B

Every row of A times matrix B : \(\left[\begin{matrix} a_1 \\ a_2 \\ \vdots \\a_n \end{matrix}\right]B=\left[\begin{matrix} a_1B \\ a_2B \\ \vdots \\a_nB \end{matrix}\right]\)

The columns multiply rows

Multiply columns 1 to n of A times rows 1 to n of B. Add those matrices.

\[\left[\begin{matrix} col_1&\cdots&col_n \\ \vdots&\vdots&\vdots \end{matrix}\right]
\left[\begin{matrix} row_1&\cdots \\ \vdots&\vdots \\row_n&\cdots \end{matrix}\right]
=(col_1)(row_1)+...+(col_n)(row_n)
\]
Block Multiplication

A and B cut into blocks(which are small matrices).

\[A = \left[\begin{matrix} A_1&A_2\\ A_3&A_4 \end{matrix}\right] \\
B = \left[\begin{matrix} B_1&B_2\\ B_3&B_4 \end{matrix}\right] \\
AB =\left[\begin{matrix} A_1&A_2\\ A_3&A_4 \end{matrix}\right]
\left[\begin{matrix} B_1&B_2\\ B_3&B_4 \end{matrix}\right] =
\left[\begin{matrix} A_1B_1 + A_2B_3&A_1B_2 + A_2B_4\\ A_3B_1 + A_4B_3&A_2B_2 + A_4B_4\end{matrix}\right]
\]

2.3.2 The Laws for Matrix Operations

Additions

Commutative law : A + B = B + A

Distributive law : c(A + B) = cA + cB

Associative law : A + (B + C) = (A + B) + C

Multiply

Commutative law is usually broken : \(AB \neq BA\)

Distributive law : (A + B)C = AC + BC or C(A + B) = CA + CB

Associative law : A (B C) = (A B) C

2.4 Inverse Matrices

The matrix A is invertible if there exists a matrix \(A^{-1}\) that "inverts" A :

\[A^{-1}A = I \quad and \quad AA^{-1}=I
\]
  • A is invertible if and only if it has n pivots (row exchanges allowed).
  • If Ax = 0 for a nonzero vector x, then A has no inverse.
  • The inverse of AB is the reverse product \(B^{-1}A^{-1}\),and \((ABC)^{-1}=C^{-1}B^{-1}A^{-1}\).
  • Diagonally dominant matrices are invertible.Each \(|a_{ii}|\)dominates its row.

Gauss-Jordan Method

\[[A \quad I] \quad reduce \quad to \quad [I \quad A^{-1}]
\]

example $A = \left[ \begin{matrix} 2&3 \ 4&7 \end{matrix}\right] $:

\[[A \quad I] = \left[ \begin{matrix} 2&3&1&0 \\ 4&7&0&1 \end{matrix}\right] \\
\Downarrow \\
[U \quad L^{-1}]=\left[ \begin{matrix} 2&3&1&0 \\ 0&1&-2&1 \end{matrix}\right] \quad \\
\Downarrow \\
\left[ \begin{matrix} 2&0&7&-3 \\ 0&1&-2&1 \end{matrix}\right] \\
\Downarrow \\
[I \quad A^{-1}]=\left[ \begin{matrix} 1&0&7/2&-3/2 \\ 0&1&-2&1 \end{matrix}\right] \quad \\
\]

2.5 Factorization : A = LU

Gaussian elimination (with no row exchanges) factors A into L times U,the factors L and U are triangular matrices, and L include all their inverse.

\[A = LU \quad (which \quad L \rightarrow lower \quad triangular, \quad U \rightarrow upper \quad trangular)
\]
\[(E_{n(n-1)}...E_{31}E_{21})A = U \\
\Downarrow \\
(E_{21}^{-1}E_{31}^{-1}...E_{n(n-1)}^{-1})(E_{n(n-1)}...E_{31}E_{21})A = (E_{21}^{-1}E_{31}^{-1}...E_{n(n-1)}^{-1})U \\
\Downarrow \\
A = LU \\
\]

example \(A = \left[ \begin{matrix} 2&1&0 \\ 1&2&1 \\ 0&1&2 \end{matrix}\right] =
\left[ \begin{matrix} 1&0&0 \\ 1/2&1&0 \\ 0&2/3&1 \end{matrix}\right]
\left[ \begin{matrix} 2&1&0 \\ 0&3/2&1 \\ 0&0&4/3 \end{matrix}\right] = LU\)

The triangular factorization can be written : \(A = LU \rightarrow A=LDU\), that D is a diagonal matrix contains the pivots.

Split U into \(DU=\left[ \begin{matrix} d_1&&& \\ &d_2&& \\ &&\ddots \\ &&&d_n \end{matrix}\right]\left[ \begin{matrix} 1&u_{12}/d_1&u_{13}/d_1&\cdots \\ &1&u_{23}/d_2&\vdots \\ &&\ddots \\ &&&1 \end{matrix}\right]\)

example:

\[A = \left[ \begin{matrix} 2&1&0 \\ 1&2&1 \\ 0&1&2 \end{matrix}\right] \\ =
\left[ \begin{matrix} 1&0&0 \\ 1/2&1&0 \\ 0&2/3&1 \end{matrix}\right]
\left[ \begin{matrix} 2&1&0 \\ 0&3/2&1 \\ 0&0&4/3 \end{matrix}\right] \\ =
\left[ \begin{matrix} 1&0&0 \\ 1/2&1&0 \\ 0&2/3&1 \end{matrix}\right]
\left[ \begin{matrix} 2&0&0 \\ 0&3/2&0 \\ 0&0&4/3 \end{matrix}\right]\left[ \begin{matrix} 1&1/2&0 \\ 0&1&2/3 \\ 0&0&1 \end{matrix}\right]= LDU
\]

Keys

  • The lower triangular L contains the number \(l_{ij}\) that multiply pivot rows, going from A to U. The product LU adds those rows back to recover A.
  • On the right side we solve Lc = b (forward) and Ux=c (backward).
  • Cost : the left side costs \(1/3(n^3 -n)\) multiplications and subtractions,the right side costs \(n^2\) multiplications and subtractions.

2.6 Transposes and Permutations

Transposes

The columns of \(A^{T}\) are the rows of A

\[(A^{T})_{ij} = A_{ji}
\]

If \(A = \left [ \begin{matrix} 1&2&3 \\ 0&0&4 \end{matrix}\right]\) then \(A^{T} = \left [ \begin{matrix} 1&0 \\ 2&0 \\ 3&4 \end{matrix}\right]\)

Sum : \((A+B)^{T} = A^{T} + B^{T}\)

Product : \((AB)^{T} = B^{T}A^{T}\)

Inverse : \((A^{T})^{-1} = (A^{-1})^{T}\)

Symmetric matrix (\(S^T=S\)):\(U = L^T \rightarrow S = LDU = LDL^T\)

Permutations

A permutation matrix P has the rows of the identity I in any order, \(P_{ij}\) is constructed by exchanging two row i and j of \(I\),and there are \(n!\) permuataion matrices of order n.

3 by 3 permuation matrices:

\[I = \left [ \begin{matrix} 1&& \\ &1& \\ &&1 \end{matrix}\right] \quad
P_{21} = \left [ \begin{matrix} &1& \\ 1&& \\ &&1 \end{matrix}\right] \quad
P_{31} = \left [ \begin{matrix} &&1\\ &1& \\ 1&& \end{matrix}\right] \\
P_{32} = \left [ \begin{matrix} 1&&\\ &&1 \\ &1& \end{matrix}\right] \quad
P_{32}P_{21} = \left [ \begin{matrix} &1&\\ &&1 \\ 1&& \end{matrix}\right] \quad
P_{21}P_{32} = \left [ \begin{matrix} &&1\\ 1&& \\ &1& \end{matrix}\right]
\]
  • If A is invertible then a permutation P will reorder its rows for PA=LU.
  • A permutation matrix P has a 1 in each row and column, and \(P^T = P^{-1}\).

2. Solving Linear Equations的更多相关文章

  1. Linear Equations

    4.1 Linear Equations with One Independent Variable

  2. Linear Equations in Linear Algebra

    Linear System Vector Equations The Matrix Equation Solution Sets of Linear Systems Linear Indenpende ...

  3. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  4. Java基础常见英语词汇

    Java基础常见英语词汇(共70个) ['ɔbdʒekt] ['ɔ:rientid]导向的                             ['prəʊɡræmɪŋ]编程 OO: object ...

  5. 看到了必须要Mark啊,最全的编程中英文词汇对照汇总(里面有好几个版本的,每个版本从a到d的顺序排列)

    java:  第一章: JDK(Java Development Kit) java开发工具包 JVM(Java Virtual Machine) java虚拟机 Javac  编译命令 java   ...

  6. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

  7. 专业英语词汇(Java)

    abstract (关键字)             抽象 ['.bstr.kt] access                            vt.访问,存取 ['.kses]‘(n.入口, ...

  8. Lua的各种资源1

    Libraries And Bindings     LuaDirectory > LuaAddons > LibrariesAndBindings This is a list of l ...

  9. JAVA常用单词

    柠檬学院Java 基础常见英语词汇(共 70 个)OO: object-oriented ,面向对象 OOP: object-oriented programming,面向对象编程JDK:Java d ...

  10. java常用英语单词

    abstract (关键字) 抽象 ['.bstr.kt] access vt.访问,存取 ['.kses]'(n.入口,使用权) algorithm n.算法 ['.lg.riem] annotat ...

随机推荐

  1. Java 封装性的四种权限测试 + 总结

    *    总结封装性:Java提供了4中权限修饰符来修饰类及类的内部结构,体现类及类的内部结构再被调用时的可见性的大小 1 package com.bytezero.circle; 2 3 publi ...

  2. VC-MFC 登陆界面 + 数据库账号+密码

    1 // DlgUser.cpp : 实现文件 2 // 3 4 #include "stdafx.h" 5 #include "Login.h" 6 #inc ...

  3. php7中的三元运算符的区别

    <?php $tmparr = ['cover'=>'http://img.immomo.com.cn']; echo isset($tmparr['cover'])."\n&q ...

  4. tomcat SSL安全连接配置简介

    tomcat中使用https提供服务,配置的方式有两种.生成或购买CA证书时会要求绑定域名.设置密码和证书别名(aliase). tomcat可用的证书列表里用三个文件: 方式一: <Conne ...

  5. 摆脱鼠标系列 - vscode - 跳转到下一个文件 Ctrl(右边) + PageDown 这个很常用

    为什么 摆脱鼠标系列 - vscode - 跳转到下一个文件 Ctrl(右边) + PageDown 这个很常用 右边Ctrl 就可以单手操控了 这个频率很高

  6. 关闭 nginx | taskkill /f /t /im nginx.exe

    stop.bat taskkill /f /t /im nginx.exe pause

  7. stm32 fatfs 文件系统分析和代码解析

    一 文件系统: 文件系统是操作系统用于明确存储设备(常见的是磁盘,也有基于NAND Flash的固态硬盘)或分区上的文件的方法和数据结构:即在存储设备上组织文件的方法.操作系统中负责管理和存储文件信息 ...

  8. 从一线方案商的角度来看高通QCC3020芯片

    写在前面的话   QCC3020的推出已经有一段时间了.在蓝牙音频的圈子里,属于家喻户晓的芯片了.再加上高通的大力宣传和一些顶尖级产品的使用,可以说,它是高通在吸收CSR的技术之后,着力推出的最具竞争 ...

  9. 观展新体验!3DCAT助力青桔 “未来之见”线上发布会炫酷亮相

    在"未来之见"滴滴青桔2021新品发布会现场,青桔推出概念车"青桔X","X"代表了无限可能和憧憬,街边的共享单车?这只是其中一面,青桔为您 ...

  10. 记录--你不知道的Js高级方法

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前言 在Js中有一些比较冷门但是非常好用的方法,我在这里称之为高级方法,这些方法没有被广泛使用或多或少是因为存在一些兼容性的问题,不是所有 ...