2.1 Linear Equations Picture

Row Picture

2 by 2 equations

Two equations, Two unknowns

\[\begin{matrix} x - 2y = 1 \\ 3x + 2y = 11 \end{matrix}
\]

The row picture shows two lines meeting at a single point(the solution).

3 by 3 equations

Three equations, Three unknowns

\[Ax=b \ \ => \ \ \begin{matrix} x + 2y + 3z = 6 \\ 2x + 5y + 2z = 4 \\ 6x - 3y + z = 2\end{matrix}
\]

The row picture shows three planes meeting at a single point.

Column Picture

2 by 2 equations

Two equations, Two unknowns

\[\begin{matrix} x - 2y = 1 \\ 3x + 2y = 11 \end{matrix} =>x\left[ \begin{matrix} 1\\ 3 \\ \end{matrix} \right] + y\left[ \begin{matrix} -2\\ 2 \\ \end{matrix} \right] =\left[\begin{matrix} 1 \\ 11 \end{matrix}\right] = b
\]

The column picture combines the column vectors on the left side to produce the vector b on the right side.

(The left side of the vector equation is a linear combination of the columns)

3 by 3 equations

Three equations, Three unknowns

\[\begin{matrix} x + 2y + 3z = 6 \\ 2x + 5y + 2z = 4 \\ 6x - 3y + z = 2 \end{matrix} =>x\left[ \begin{matrix} 1\\ 2\\6 \\ \end{matrix} \right] + y\left[ \begin{matrix} 2\\ 5 \\-3 \\ \end{matrix} \right] + z\left[ \begin{matrix} 3\\ 2 \\1 \\ \end{matrix} \right] =\left[\begin{matrix} 4 \\ 6 \\ 2\end{matrix}\right] = b
\]

The column picture combines three columns to produce b,the coefficients (x,y,z) = (0,0,2).

2.2 Elimination

2.2.1 Gaussian Elimination

  • Column 1 : Use the first equation to create zeros below the first pivot.
  • Column 2 : Use the new equation 2 to create zeros below the second pivot.
  • Column 3 to n : Keep going to find all n pivots and the upper triangular U.
2 by 2

Multiply equation 1 by 3, and Subtract from equation 2.

\[(Before) \ \ \begin{matrix} x - 2y = 1 \\ 3x + 2y = 11 \end{matrix} ==> (After) \ \ \begin{matrix} x - 2y = 1 \\ 8y = 8 \end{matrix}
\]

3 by 3
\[Ax = b \ ==> \ \begin{matrix} 2x + 4y - 2z = 2 \\ 4x + 9y - 3z = 8 \\ -2x-3y+7z=10 \end{matrix}
\]

Elimination Steps

step1 : Subtract 2 times equation 1 from equation 2.

\[\begin{matrix} 2x + 4y - 2z = 2 \\
\quad \quad \quad y + z = 4 \\
-2x-3y+7z=10 \end{matrix}
\]

step2 : Subtract -1 times equation 1 from equation 3.

\[\begin{matrix} 2x + 4y - 2z = 2 \\
\quad \quad \quad y + z = 4 \\
\quad \quad \quad \quad y+5z=12 \end{matrix}
\]

step3 : Subtract new equation 2 from new equation 3.

\[\quad \begin{matrix} 2x + 4y - 2z = 2 \\
\quad \quad \quad \quad y + z = 4 \\
\quad \quad \quad \quad \quad 4z = 8 \end{matrix}
==>Ux = c
\]

U is upper triangular.

Back substitution

z = 2 --> y = 2 --> x = -1

2.2.2 Elimination-Matrix

Elimination multiplies Ax=b by \(E_{21} , E_{31} , E_{41}, ..., E_{n1}\), then \(E_{32} , E_{42}, ..., E_{n2}\) and onward.

  • \(E =E_{21} ,..., E_{n1},..., E_{n2},...,E_{n(n-1)}\) , \(EA = [Ea_1...Ea_n]\)
  • Augmented matrix : \(E[A\ \ b] = [EA\ \ Eb]\)

example:

\[Ax = b \\
\Downarrow \\
\begin{matrix} 2x_1 + 4x_2 - 2x_3 = 2 \\ 4x_1 + 9x_2 - 3x_3 = 8 \\ -2x_1-3x_2+7x_3=10 \end{matrix} \\
\Downarrow \\
\left[ \begin{matrix} 2&4&-2 \\ 4&9&-3 \\ -2&-3&7 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 2\\8\\10 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 1&0&0 \\ -2&1&0 \\ 0&0&1 \end{matrix} \right]
\left[ \begin{matrix} 2&4&-2 \\ 4&9&-3 \\ -2&-3&7 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 1&0&0 \\ -2&1&0 \\ 0&0&1 \end{matrix} \right]
\left[ \begin{matrix} 2\\8\\10 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 2&4&-2 \\ 0&1&1 \\ -2&-3&7 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 2\\4\\10 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 1&0&0 \\ 0&1&0 \\ 1&0&1 \end{matrix} \right]
\left[ \begin{matrix} 2&4&-2 \\ 0&1&1 \\ -2&-3&7 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 1&0&0 \\ 0&1&0 \\ 1&0&1 \end{matrix} \right]
\left[ \begin{matrix} 2\\4\\10 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 2&4&-2 \\ 0&1&1 \\ 0&1&5 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 2\\4\\12 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 1&0&0 \\ 0&1&0 \\ 0&-1&1 \end{matrix} \right]
\left[ \begin{matrix} 2&4&-2 \\ 0&1&1 \\ 0&1&5 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 1&0&0 \\ 0&1&0 \\ 0&-1&1 \end{matrix} \right]
\left[ \begin{matrix} 2\\4\\12 \end{matrix} \right] \\
\Downarrow \\
\left[ \begin{matrix} 2&4&-2 \\ 0&1&1 \\ 0&0&4 \end{matrix} \right]
\left[ \begin{matrix} x_1\\x_2\\x_3 \end{matrix} \right] =
\left[ \begin{matrix} 2\\4\\8 \end{matrix} \right] \\
\Downarrow Back \ \ substitution \\
x_3 = 2 , x_2 = 2, x_1 = -1
\]

2.3 Rules for Matrix Operations

2.3.1 Matrix Multiplication

Matrices A with n columns multiply matrices B with n rows : \(A_{m \times n} B_{n \times p} = C_{m \times p}\)

The regular way

The entry in row i and column j of AB is (row i of A) \(\cdot\) (column j of B): \((AB)_{ij}=a_{i1}b_{1j} + a_{i2}b_{2j}+...+a_{in}b_{nj}\)

\[\left[ \begin{matrix} * \\ a_{i1}&a_{i2}&...&a_{in} \\ * \\* \end{matrix} \right]
\left[ \begin{matrix} *&b_{1j}&*&*\\ &b_{2j}&&\ \\ &\vdots&& \\ &b_{nj}&& \end{matrix} \right]=
\left[ \begin{matrix} &&*&& \\ *&*&(AB)_{ij}&*&* \\ &&*&& \\&&*&& \end{matrix} \right]
\]
The column way

Each column of AB is a combination of the columns of A.

Matrix A times every column of B : \(A[b_1...b_p]=[Ab_1...Ab_p]\)

The row way

Every row of AB is a combination of the rows of B

Every row of A times matrix B : \(\left[\begin{matrix} a_1 \\ a_2 \\ \vdots \\a_n \end{matrix}\right]B=\left[\begin{matrix} a_1B \\ a_2B \\ \vdots \\a_nB \end{matrix}\right]\)

The columns multiply rows

Multiply columns 1 to n of A times rows 1 to n of B. Add those matrices.

\[\left[\begin{matrix} col_1&\cdots&col_n \\ \vdots&\vdots&\vdots \end{matrix}\right]
\left[\begin{matrix} row_1&\cdots \\ \vdots&\vdots \\row_n&\cdots \end{matrix}\right]
=(col_1)(row_1)+...+(col_n)(row_n)
\]
Block Multiplication

A and B cut into blocks(which are small matrices).

\[A = \left[\begin{matrix} A_1&A_2\\ A_3&A_4 \end{matrix}\right] \\
B = \left[\begin{matrix} B_1&B_2\\ B_3&B_4 \end{matrix}\right] \\
AB =\left[\begin{matrix} A_1&A_2\\ A_3&A_4 \end{matrix}\right]
\left[\begin{matrix} B_1&B_2\\ B_3&B_4 \end{matrix}\right] =
\left[\begin{matrix} A_1B_1 + A_2B_3&A_1B_2 + A_2B_4\\ A_3B_1 + A_4B_3&A_2B_2 + A_4B_4\end{matrix}\right]
\]

2.3.2 The Laws for Matrix Operations

Additions

Commutative law : A + B = B + A

Distributive law : c(A + B) = cA + cB

Associative law : A + (B + C) = (A + B) + C

Multiply

Commutative law is usually broken : \(AB \neq BA\)

Distributive law : (A + B)C = AC + BC or C(A + B) = CA + CB

Associative law : A (B C) = (A B) C

2.4 Inverse Matrices

The matrix A is invertible if there exists a matrix \(A^{-1}\) that "inverts" A :

\[A^{-1}A = I \quad and \quad AA^{-1}=I
\]
  • A is invertible if and only if it has n pivots (row exchanges allowed).
  • If Ax = 0 for a nonzero vector x, then A has no inverse.
  • The inverse of AB is the reverse product \(B^{-1}A^{-1}\),and \((ABC)^{-1}=C^{-1}B^{-1}A^{-1}\).
  • Diagonally dominant matrices are invertible.Each \(|a_{ii}|\)dominates its row.

Gauss-Jordan Method

\[[A \quad I] \quad reduce \quad to \quad [I \quad A^{-1}]
\]

example $A = \left[ \begin{matrix} 2&3 \ 4&7 \end{matrix}\right] $:

\[[A \quad I] = \left[ \begin{matrix} 2&3&1&0 \\ 4&7&0&1 \end{matrix}\right] \\
\Downarrow \\
[U \quad L^{-1}]=\left[ \begin{matrix} 2&3&1&0 \\ 0&1&-2&1 \end{matrix}\right] \quad \\
\Downarrow \\
\left[ \begin{matrix} 2&0&7&-3 \\ 0&1&-2&1 \end{matrix}\right] \\
\Downarrow \\
[I \quad A^{-1}]=\left[ \begin{matrix} 1&0&7/2&-3/2 \\ 0&1&-2&1 \end{matrix}\right] \quad \\
\]

2.5 Factorization : A = LU

Gaussian elimination (with no row exchanges) factors A into L times U,the factors L and U are triangular matrices, and L include all their inverse.

\[A = LU \quad (which \quad L \rightarrow lower \quad triangular, \quad U \rightarrow upper \quad trangular)
\]
\[(E_{n(n-1)}...E_{31}E_{21})A = U \\
\Downarrow \\
(E_{21}^{-1}E_{31}^{-1}...E_{n(n-1)}^{-1})(E_{n(n-1)}...E_{31}E_{21})A = (E_{21}^{-1}E_{31}^{-1}...E_{n(n-1)}^{-1})U \\
\Downarrow \\
A = LU \\
\]

example \(A = \left[ \begin{matrix} 2&1&0 \\ 1&2&1 \\ 0&1&2 \end{matrix}\right] =
\left[ \begin{matrix} 1&0&0 \\ 1/2&1&0 \\ 0&2/3&1 \end{matrix}\right]
\left[ \begin{matrix} 2&1&0 \\ 0&3/2&1 \\ 0&0&4/3 \end{matrix}\right] = LU\)

The triangular factorization can be written : \(A = LU \rightarrow A=LDU\), that D is a diagonal matrix contains the pivots.

Split U into \(DU=\left[ \begin{matrix} d_1&&& \\ &d_2&& \\ &&\ddots \\ &&&d_n \end{matrix}\right]\left[ \begin{matrix} 1&u_{12}/d_1&u_{13}/d_1&\cdots \\ &1&u_{23}/d_2&\vdots \\ &&\ddots \\ &&&1 \end{matrix}\right]\)

example:

\[A = \left[ \begin{matrix} 2&1&0 \\ 1&2&1 \\ 0&1&2 \end{matrix}\right] \\ =
\left[ \begin{matrix} 1&0&0 \\ 1/2&1&0 \\ 0&2/3&1 \end{matrix}\right]
\left[ \begin{matrix} 2&1&0 \\ 0&3/2&1 \\ 0&0&4/3 \end{matrix}\right] \\ =
\left[ \begin{matrix} 1&0&0 \\ 1/2&1&0 \\ 0&2/3&1 \end{matrix}\right]
\left[ \begin{matrix} 2&0&0 \\ 0&3/2&0 \\ 0&0&4/3 \end{matrix}\right]\left[ \begin{matrix} 1&1/2&0 \\ 0&1&2/3 \\ 0&0&1 \end{matrix}\right]= LDU
\]

Keys

  • The lower triangular L contains the number \(l_{ij}\) that multiply pivot rows, going from A to U. The product LU adds those rows back to recover A.
  • On the right side we solve Lc = b (forward) and Ux=c (backward).
  • Cost : the left side costs \(1/3(n^3 -n)\) multiplications and subtractions,the right side costs \(n^2\) multiplications and subtractions.

2.6 Transposes and Permutations

Transposes

The columns of \(A^{T}\) are the rows of A

\[(A^{T})_{ij} = A_{ji}
\]

If \(A = \left [ \begin{matrix} 1&2&3 \\ 0&0&4 \end{matrix}\right]\) then \(A^{T} = \left [ \begin{matrix} 1&0 \\ 2&0 \\ 3&4 \end{matrix}\right]\)

Sum : \((A+B)^{T} = A^{T} + B^{T}\)

Product : \((AB)^{T} = B^{T}A^{T}\)

Inverse : \((A^{T})^{-1} = (A^{-1})^{T}\)

Symmetric matrix (\(S^T=S\)):\(U = L^T \rightarrow S = LDU = LDL^T\)

Permutations

A permutation matrix P has the rows of the identity I in any order, \(P_{ij}\) is constructed by exchanging two row i and j of \(I\),and there are \(n!\) permuataion matrices of order n.

3 by 3 permuation matrices:

\[I = \left [ \begin{matrix} 1&& \\ &1& \\ &&1 \end{matrix}\right] \quad
P_{21} = \left [ \begin{matrix} &1& \\ 1&& \\ &&1 \end{matrix}\right] \quad
P_{31} = \left [ \begin{matrix} &&1\\ &1& \\ 1&& \end{matrix}\right] \\
P_{32} = \left [ \begin{matrix} 1&&\\ &&1 \\ &1& \end{matrix}\right] \quad
P_{32}P_{21} = \left [ \begin{matrix} &1&\\ &&1 \\ 1&& \end{matrix}\right] \quad
P_{21}P_{32} = \left [ \begin{matrix} &&1\\ 1&& \\ &1& \end{matrix}\right]
\]
  • If A is invertible then a permutation P will reorder its rows for PA=LU.
  • A permutation matrix P has a 1 in each row and column, and \(P^T = P^{-1}\).

2. Solving Linear Equations的更多相关文章

  1. Linear Equations

    4.1 Linear Equations with One Independent Variable

  2. Linear Equations in Linear Algebra

    Linear System Vector Equations The Matrix Equation Solution Sets of Linear Systems Linear Indenpende ...

  3. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  4. Java基础常见英语词汇

    Java基础常见英语词汇(共70个) ['ɔbdʒekt] ['ɔ:rientid]导向的                             ['prəʊɡræmɪŋ]编程 OO: object ...

  5. 看到了必须要Mark啊,最全的编程中英文词汇对照汇总(里面有好几个版本的,每个版本从a到d的顺序排列)

    java:  第一章: JDK(Java Development Kit) java开发工具包 JVM(Java Virtual Machine) java虚拟机 Javac  编译命令 java   ...

  6. (转)Awesome Courses

    Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scatte ...

  7. 专业英语词汇(Java)

    abstract (关键字)             抽象 ['.bstr.kt] access                            vt.访问,存取 ['.kses]‘(n.入口, ...

  8. Lua的各种资源1

    Libraries And Bindings     LuaDirectory > LuaAddons > LibrariesAndBindings This is a list of l ...

  9. JAVA常用单词

    柠檬学院Java 基础常见英语词汇(共 70 个)OO: object-oriented ,面向对象 OOP: object-oriented programming,面向对象编程JDK:Java d ...

  10. java常用英语单词

    abstract (关键字) 抽象 ['.bstr.kt] access vt.访问,存取 ['.kses]'(n.入口,使用权) algorithm n.算法 ['.lg.riem] annotat ...

随机推荐

  1. 【Azure 环境】Azure 的PaaS服务如果涉及到安全漏洞问题后,我们如何确认所用服务的实例(VM:虚拟机)的操作系统已修复该补丁呢?

    问题描述 如上图中PaaS所不可见区域, 操作系统级别的内容我们并不知道具体的内容.如果当出现新的操作系统级别的安全漏洞时候,我们如何来确认当前所使用的Azure PaaS服务所在主机的OS已经修复了 ...

  2. Glide源码解析三(注册组件)

    转载请标明出处,维权必究: https://www.cnblogs.com/tangZH/p/12900387.html Glide源码解析一,初始化 Glide源码解析二-into方法 Glide源 ...

  3. C#拾遗补漏之goto跳转语句

    前言 在我们日常工作中常用的C#跳转语句有break.continue.return,但是还有一个C#跳转语句很多同学可能都比较的陌生就是goto,今天大姚带大家一起来认识一下goto语句及其它的优缺 ...

  4. 原生、复杂流程操作、融合专家系统,澜码科技发布企业级Agent平台AskXBOT

    AI原生企业级Agent构建平台具备哪些特性?澜码AskXBOT平台揭晓答案 澜码科技正式发布了AI原生企业级Agent平台AskXBOT,怎么看待这个产品? 原生.复杂流程操作.融合专家系统,澜码科 ...

  5. CPNtools协议建模安全分析---实例变迁标记(五)

    之前的说了库所的标记,现在我们开始加讲变迁标记 1.描述变迁的标记有四种类型,分别是变迁的标记,门卫的标记,世间的标记,代码片段的标记. 咋变迁中限制更严格的输入token,其中Code Segeme ...

  6. autohotkey 设置快捷键 设置光标位置 (ctrl + alt + Numpad0)

    autohotkey 设置快捷键 设置光标位置 (ctrl + alt + Numpad0) 原因 3个屏幕,所以鼠标设置的灵敏度非常高,经常就找不到鼠标在哪了. 设置个快捷键,让鼠标每次都初始化一个 ...

  7. 提升地理空间分析效率,火山引擎ByteHouse上线GIS能力

    更多技术交流.求职机会,欢迎关注字节跳动数据平台微信公众号,回复[1]进入官方交流群 在数字化时代,地理空间分析(Geospatial Analytics)成为辅助企业市场策略洞察的重要手段.无论是广 ...

  8. python 读取txt并绘制波形图实例解析

    一 用python绘图有很多方法,笔者找到了一种最简单的方法,使用非常便利,这里分享一下: import numpy as np import matplotlib.pyplot as plt a = ...

  9. c语言中内存分配malloc,calloc,realloc函数的区别和联系

    一 概念: A malloc() 在内存的动态存储区中分配一块长度为size字节的连续区域,参数size为需要内存空间的长度,返回该区域的首地址 B calloc() 与malloc相似,参数size ...

  10. electron 中如何安装或更新 vuejs-devtool 最新稳定版

    手上正在开发的项目是vue3.0 通过添加 vue-cli-plugin-electron-builder 插件生成 electron 项目,项目在开发过程中发现 beta版的 vuejs-devto ...