[AGC030D] Inversion Sum
Problem Statement
You are given an integer sequence of length $N$: $A_1,A_2,...,A_N$. Let us perform $Q$ operations in order.
The $i$-th operation is described by two integers $X_i$ and $Y_i$. In this operation, we will choose one of the following two actions and perform it:
- Swap the values of $A_{X_i}$ and $A_{Y_i}$
- Do nothing
There are $2^Q$ ways to perform these operations. Find the sum of the inversion numbers of the final sequences for all of these ways to perform operations, modulo $10^9+7$.
Here, the inversion number of a sequence $P_1,P_2,...,P_M$ is the number of pairs of integers $(i,j)$ such that $1\leq i < j\leq M$ and $P_i > P_j$.
Constraints
- $1 \leq N \leq 3000$
- $0 \leq Q \leq 3000$
- $0 \leq A_i \leq 10^9(1\leq i\leq N)$
- $1 \leq X_i,Y_i \leq N(1\leq i\leq Q)$
- $X_i\neq Y_i(1\leq i\leq Q)$
- All values in input are integers.
先定义 \(dp_{i,j}\) 为 \(a_i<a_j\) 的方案数。
然后发现一次交换会改变所有的 \(dp_{i,j}\)。但是大多的 \(dp_{i,j}\) 都是乘上2,除了 \(x_i\) 和 \(y_i\) 相关的 dp 以外。
所以把 \(dp_{i,j}\) 的定义改为 \(a_i>a_j\) 的概率,然后每次只有 \(O(n)\) 个 dp 值会修改。
#include<bits/stdc++.h>
using namespace std;
const int N=3005,P=1e9+7,iv2=P+1>>1;
int n,q,pw[N],dp[N][N],a[N],x,y,ans,g1[N],g2[N];
int main()
{
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)
scanf("%d",a+i);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dp[i][j]=a[i]>a[j];
for(int i=pw[0]=1;i<=q;i++)
{
pw[i]=pw[i-1]<<1;
if(pw[i]>=P)
pw[i]-=P;
}
for(int i=1;i<=q;i++)
{
scanf("%d%d",&x,&y);
for(int i=1;i<=n;i++)
g1[i]=dp[i][x]&1? dp[i][x]+P>>1:dp[i][x]>>1,g2[i]=dp[x][i]&1? dp[x][i]+P>>1:dp[x][i]>>1;
for(int i=1;i<=n;i++)
{
if(i^x&&i^y)
{
dp[i][x]=(dp[i][x]&1? dp[i][x]+P>>1:dp[i][x]>>1)+(dp[i][y]&1? dp[i][y]+P>>1:dp[i][y]>>1);
if(dp[i][x]>=P)
dp[i][x]-=P;
}
}
for(int i=1;i<=n;i++)
{
if(i^x&&i^y)
{
dp[x][i]=(dp[x][i]&1? dp[x][i]+P>>1:dp[x][i]>>1)+(dp[y][i]&1? dp[y][i]+P>>1:dp[y][i]>>1);
if(dp[x][i]>=P)
dp[x][i]-=P;
}
}
for(int i=1;i<=n;i++)
{
if(i^y&&i^x)
{
dp[i][y]=(dp[i][y]&1? dp[i][y]+P>>1:dp[i][y]>>1)+g1[i];
if(dp[i][y]>=P)
dp[i][y]-=P;
}
}
for(int i=1;i<=n;i++)
{
if(i^y&&i^x)
{
dp[y][i]=(dp[y][i]&1? dp[y][i]+P>>1:dp[y][i]>>1)+g2[i];
if(dp[y][i]>=P)
dp[y][i]-=P;
}
}
dp[x][y]=dp[y][x]=(dp[x][y]+dp[y][x])*1LL*iv2%P;
}
for(int j=1;j<n;j++)
{
for(int k=j+1;k<=n;k++)
{
ans+=dp[j][k];
if(ans>=P)
ans-=P;
}
}
printf("%lld",ans*1LL*pw[q]%P);
}
[AGC030D] Inversion Sum的更多相关文章
- CF258D Little Elephant and Broken Sorting/AGC030D Inversion Sum 期望、DP
传送门--Codeforces 传送门--Atcoder 考虑逆序对的产生条件,是存在两个数\(i,j\)满足\(i < j,a_i > a_j\) 故设\(dp_{i,j}\)表示\(a ...
- 「AGC030D」Inversion Sum
「AGC030D」Inversion Sum 传送门 妙啊. 由于逆序对的个数最多只有 \(O(n^2)\) 对,而对于每一个询问与其相关的逆序对数也最多只有 \(O(n)\) 对,我们可以对于每一对 ...
- 【AGC030D】Inversion Sum DP
题目大意 有一个序列 \(a_1,a_2,\ldots,a_n\),有 \(q\) 次操作,每次操作给你两个数 \(x,y\),你可以交换 \(a_x,a_y\),或者什么都不做. 问你所有 \(2^ ...
- AGC 030D.Inversion Sum(DP 期望)
题目链接 \(Description\) 给定长为\(n\)的序列\(A_i\)和\(q\)次操作\((x,y)\).对于每次操作\((x,y)\),可以选择交换\(A_x,A_y\)两个数,也可以选 ...
- CSP-S2020 DP专项训练
前言 \(\text{CPS-S2020}\) 已然临近,而 \(\text{DP}\) 作为联赛中的常考内容,是必不可少的复习要点,现根据教练和个人刷题,整理部分好题如下(其实基本上是直接搬--). ...
- AtCoder Grand Contest 030题解
第一次套刷AtCoder 体验良好 传送门 Poisonous Cookies cout<<b+min(c,a+b+); Tree Burning 难度跨度有点大啊 可以证明当第一次转向之 ...
- AGC030 简要题解
A - Poisonous Cookies 题意 有\(A\)个能解毒的普通饼干,\(B\)个能解毒的美味饼干,\(C\)个有毒的美味饼干,求最多能吃多少个美味饼干,每次吃完有毒的饼干后要解毒后才能继 ...
- 【AtCoder】AGC030
A - Poisonous Cookies 有毒还吃,有毒吧 #include <bits/stdc++.h> #define fi first #define se second #de ...
- AtCoder Grand Contest 030 Solution
A - Poisonous Cookies 签到. #include <bits/stdc++.h> using namespace std; #define ll long long l ...
- AtCoder练习
1. 3721 Smuggling Marbles 大意: 给定$n+1$节点树, $0$为根节点, 初始在一些节点放一个石子, 然后按顺序进行如下操作. 若$0$节点有石子, 则移入盒子 所有石子移 ...
随机推荐
- SpringBoot项目统一处理返回值和异常
目录 简介 前期准备 统一封装报文 统一异常处理 自定义异常信息 简介 当使用SpringBoot开发Web项目的API时,为了与前端更好地通信,通常会约定好接口的响应格式.例如,以下是一个JSON格 ...
- .NET周刊【8月第2期 2023-08-14】
本周由于Myuki大佬感染新冠,国际板块暂停更新一周,将在下周补齐,所以本周只有国内板块. 国内文章 解决 Blazor 中因标签换行导致的行内元素空隙问题 https://www.cnblogs.c ...
- 深入探讨安全验证:OAuth2.0、Cookie与Session、JWT令牌、SSO与开放授权平台设计
什么是认证和授权?如何设计一个权限认证框架? 认证和授权是安全验证中的两个重要概念.认证是确认身份的过程,用于建立双方之间的信任关系.只有在认证成功的情况下,双方才可以进行后续的授权操作.授权则是在认 ...
- TDD、BDD、ATDD都是什么、有什么区别?(上)
软件开发是一个迭代过程,包括编写.测试和改进代码,直到满足需求.测试驱动开发(TDD).行为驱动开发(BDD)和验收测试驱动开发(ATDD)是支持该过程的三种方法.TDD.BDD和ATDD都是软件开发 ...
- C# 异步执行操作
为了方便测试异步,先加个计时 计时相关(可以直接跳过该部分) //开始计时 Stopwatch stopwatch = new Stopwatch(); stopwatch.Start(); // 停 ...
- 「codeforces - 1208F」Bits and Pieces
link. 考虑把原问题写成一个在 \(\left(\log_2 \max v \right) \times n\) 的矩阵里选出三列,我们首先预处理出 \(j \cap q\).具体,我们需要对于每 ...
- Solution Set -「CF 1525」
「CF 1525A」Potion-making Link. 显然. #include<bits/stdc++.h> typedef long long ll; template<ty ...
- Solution -「ZJOI 2014」力
Descrption Link. 对于每一个 \(i\),求出: \[\sum_{j=1}^{i-1}\frac{a_{j}}{(i-j)^{2}}-\sum_{j=i+1}^{n}\frac{a_{ ...
- 《流畅的Python》 读书笔记 231007(第二章第一部分)
第2章 数据结构 ABC语言是Python的爸爸~ 很多点子在现在看来都很有 Python 风格:序列的泛型操作.内置的元组和映射类型.用缩进来架构的源码.无需变量声明的强类型 不管是哪种数据结构,字 ...
- .NET静态代码织入——肉夹馍(Rougamo)发布2.0
肉夹馍(https://github.com/inversionhourglass/Rougamo)通过静态代码织入方式实现AOP的组件,其主要特点是在编译时完成AOP代码织入,相比动态代理可以减少应 ...