0. 数据结构图文解析系列

数据结构系列文章
数据结构图文解析之:数组、单链表、双链表介绍及C++模板实现
数据结构图文解析之:栈的简介及C++模板实现
数据结构图文解析之:队列详解与C++模板实现
数据结构图文解析之:树的简介及二叉排序树C++模板实现.
数据结构图文解析之:AVL树详解及C++模板实现
数据结构图文解析之:二叉堆详解及C++模板实现

1. 二叉堆的定义

二叉堆是一种特殊的堆,二叉堆是完全二叉树或近似完全二叉树。二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子树和右子树都是一个二叉堆。

当父节点的键值总是大于或等于任何一个子节点的键值时为最大堆。 当父节点的键值总是小于或等于任何一个子节点的键值时为最小堆。

2. 二叉堆的存储

二叉堆一般使用数组来表示。请回忆一下二叉树的性质,其中有一条性质:

性质五:如果对一棵有n个节点的完全二叉树的节点按层序编号(从第一层开始到最下一层,每一层从左到右编号,从1开始编号),对任一节点i有:

  1. 如果i=1 ,则节点为根节点,没有双亲。
  2. 如果2 * i > n ,则节点i没有左孩子 ;否则其左孩子节点为2*i . (n为节点总数)
  3. 如果2 * i+1>n ,则节点i没有右孩子;否则其右孩子节点为2*1+1.

简单来说:

  1. 如果根节点在数组中的位置是1,第n个位置的子节点分别在2n 与 2n+1,第n个位置的双亲节点分别在⌊i /2⌋。因此,第1个位置的子节点在2和3.
  2. 如果根节点在数组中的位置是0,第n个位置的子节点分别在2n+1与2n+2,第n个位置的双亲节点分别在⌊(i-1) /2⌋。因此,第0个位置的子节点在1和2.

得益于数组的随机存储能力,我们能够很快确定堆中节点的父节点与子节点。

下面以大顶堆展示一下堆的数组存储。

在本文中,我们以大顶堆为例进行堆的讲解。本文大顶堆的根节点位置为0.

3. 二叉堆的具体实现

在二叉堆上可以进行插入节点、删除节点、取出堆顶元素等操作。

3.1 二叉堆的抽象数据类型

/*大顶堆类定义*/
template <typename T>
class MaxHeap
{
public:
bool insert(T val); //往二叉堆中插入元素
bool remove(T data); //移除元素
void print(); //打印堆
T getTop(); //获取堆顶元素
bool createMaxHeap(T a[], int size);//根据指定的数组来创建一个最大堆 MaxHeap(int cap = 10);
~MaxHeap(); private:
int capacity; //容量,也即是数组的大小
int size; //堆大小,也即是数组中有效元素的个数
T * heap; //底层的数组
private:
void filterUp(int index); //从index所在节点,往根节点调整堆
void filterDown(int begin ,int end ); //从begin所在节点开始,向end方向调整堆
};
  1. 注意capacity与size的区别。capacity指的是数组的固有大小。size值数组中有效元素的个数,有效元素为组成堆的元素。
  2. heap为数组。

3.2 二叉堆的插入

在数组的最末尾插入新节点,然后自下而上地调整子节点与父节点的位置:比较当前结点与父节点的大小,若不满足大顶堆的性质,则交换两节点,从而使当前子树满足二叉堆的性质。时间复杂度为O(logn)。

当我们在上图的堆中插入元素12:

调整过程:

  1. 节点12添加在数组尾部,位置为11;
  2. 节点12的双亲位置为⌊11/2⌋ = 5,即节点6;节点12比节点6大,与节点6交换位置。交换后节点12的位置为5.
  3. 节点12的双亲位置为⌊ 5 /2⌋ = 2,即节点9;节点12比节点9大,与节点9交换位置。交换后节点12的位置为2.
  4. 节点12的双亲位置为⌊2/2⌋ = 1,即节点11;节点12比节点11大,与节点11交换位置。交换后节点12的位置为1.
  5. 12已经到达根节点,调整过程结束。

这个从下到上的调整过程为:

/*从下到上调整堆*/
/*插入元素时候使用*/
template <typename T>
void MaxHeap<T>::filterUp(int index)
{
T value = heap[index]; //插入节点的值,图中的12 while (index > 0) //如果还未到达根节点,继续调整
{
int indexParent = (index -1)/ 2; //求其双亲节点
if (value< heap[indexParent])
break;
else
{
heap[index] = heap[indexParent];
index = indexParent;
}
}
heap[index] = value; //12插入最后的位置
};

在真正编程的时候,为了效率我们不必进行节点的交换,直接用父节点的值覆盖子节点。最后把新节点插入它最后的位置即可。

基于这个调整函数,我们的插入函数为:

/*插入元素*/
template <typename T>
bool MaxHeap<T>::insert(T val)
{
if (size == capacity) //如果数组已满,则返回false
return false;
heap[size] = val;
filterUp(size);
size++;
return true;
};

3.3 二叉堆的删除

堆的删除是这样一个过程:用数组最末尾节点覆盖被删节点,再从该节点从上到下调整二叉堆。我们删除根节点12:

可能有人疑惑,删除后数组最末尾不是多了一个6吗?

的确,但我们把数组中有效元素的个数减少了一,最末尾的6并不是堆的组成元素。

这个从上到下的调整过程为:

/*从上到下调整堆*/
/*删除元素时候使用*/
template<typename T>
void MaxHeap<T>::filterDown(int current,int end)
{ int child = current * 2 + 1; //当前结点的左孩子 T value = heap[current]; //保存当前结点的值 while (child <= end)
{
if (child < end && heap[child] < heap[child+1])//选出两个孩子中较大的孩子
child++;
if (value>heap[child]) //无须调整;调整结束
break;
else
{
heap[current] = heap[child]; //孩子节点覆盖当前结点
current = child; //向下移动
child = child * 2 + 1;
}
}
heap[current] = value;
};

基于调整函数的删除函数:

/*删除元素*/
template<typename T>
bool MaxHeap<T>::remove(T data)
{
if (size == 0) //如果堆是空的
return false;
int index;
for (index = 0; index < size; index++) //获取值在数组中的索引
{
if (heap[index] == data)
break;
}
if (index == size) //数组中没有该值
return false; heap[index] = heap[size - 1]; //使用最后一个节点来代替当前结点,然后再向下调整当前结点。 filterDown(index,size--); return true;
};

3.4 其余操作

其余操作很简单,不在这里啰嗦。

/*打印大顶堆*/
template <typename T>
void MaxHeap<T>::print()
{
for (int i = 0; i < size; i++)
cout << heap[i] << " ";
};
/*获取堆顶元素*/
template <typename T>
T MaxHeap<T>::getTop()
{
if (size != 0)
return heap[0];
}; /*根据指定的数组来创建一个最大堆*/
template<typename T>
bool MaxHeap<T>::createMapHeap(T a[], int size)
{
if (size > capacity) // 堆的容量不足以创建
return false;
for (int i = 0; i < size; i++)
{
insert(a[i]);
}
return true;
};

4. 二叉堆代码测试

测试代码:

int _tmain(int argc, _TCHAR* argv[])
{
MaxHeap<int> heap(11);
//逐个元素构建大顶堆
for (int i = 0; i < 10; i++)
{
heap.insert(i);
}
heap.print();
cout << endl;
heap.remove(8);
heap.print();
cout << endl; //根据指定的数组创建大顶堆
MaxHeap<int> heap2(11);
int a[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
heap2.createMaxHeap(a, 10);
heap2.print();
getchar();
return 0;
}

运行结果:

9 8 5 6 7 1 4 0 3 2
9 7 5 6 2 1 4 0 3
10 9 6 7 8 2 5 1 4 3

5. 大顶堆、小顶堆完整代码下载

二叉堆完整代码:https://github.com/huanzheWu/Data-Structure/blob/master/MaxHeap/MaxHeap/MaxHeap.h

小顶堆完整代码:https://github.com/huanzheWu/Data-Structure/blob/master/MinHeap/MinHeap/MinHeap.h

原创文章,转载请注明出处:http://www.cnblogs.com/QG-whz/p/5173112.html

数据结构图文解析之:二叉堆详解及C++模板实现的更多相关文章

  1. 数据结构图文解析之:AVL树详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  2. 数据结构图文解析之:树的简介及二叉排序树C++模板实现.

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  3. 二叉搜索树详解(Java实现)

    1.二叉搜索树定义 二叉搜索树,是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值: 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根 ...

  4. AVL树(二叉平衡树)详解与实现

    AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必 ...

  5. 数据结构图文解析之:队列详解与C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  6. 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  7. 数据结构图文解析之:直接插入排序及其优化(二分插入排序)解析及C++实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  8. 数据结构图文解析之:数组、单链表、双链表介绍及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  9. 数据结构图文解析之:栈的简介及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

随机推荐

  1. iOS百度地图简单使用

    本文介绍三种接口: 1.基础地图2.POI检索3.定位 首先是配置环境,有两种方法,方法在官方教程里都有,不再多说 1.使用CocoaPods自动配置[这个方法特别好,因为当你使用CocoaPods配 ...

  2. Mac上idea快捷键

    名称 快捷键 代码提示 ctrl + space 自动修正 alt + enter 查看调用链call hierarchy ctrl + H 查找文件 双击shift 查找类 command + N ...

  3. 代替Reflection(反射)的一些方法

    Reflection(反射)是深入学习.Net必须掌握的技能之一.最初学Reflection的时候,的确是被惊住了,原来还可以这样.只要给你一个Assembly, 你就能获取到其中所有的类型,根据类型 ...

  4. Java 堆

    特性: 虚拟机启动时创建的线程共享的内存区域,所有实例对象和数组对象分配内存的区域 GC垃圾手机管理器管理的主要区域,GC堆 容量可以固定,也可以动态扩展,自动收缩 -Xmx最大堆大小 -Xms最小. ...

  5. 自己第一个github开源的感受

    自己在github上发布了开源<基于IOS的手机视频直播SDK>后,不到一个月,被人star了508次,fork了120次,这个成绩大大出乎了我自己的意料! github网址:https: ...

  6. CANopen学习——OSI模型复习

    CanOpen协议实现了物理层和数据链路层,OSI模型是完整的7层. OSI模型网络七层包括物理层.数据链路层.网络层.传输层.会话层.表示层和应用层. 物理层:提供信息传输的物理连接通道,包括使用的 ...

  7. ClearContainer 网络部分源码分析

    // cc-oci-runtime/src/oci.c /*! * Create the state file, apply mounts and run hooks, but do not star ...

  8. 在运行Hibernate Hello World程序的时候,抛如下错误: view plain Exception in thread "main" org.hibernate.exception.LockAcquisitionException 解决方法

    在运行Hibernate Hello World程序的时候,抛如下错误: Exception in thread "main" org.hibernate.exception.Lo ...

  9. BZOJ 3112: [Zjoi2013]防守战线 [单纯形法]

    题目描述 战线可以看作一个长度为n 的序列,现在需要在这个序列上建塔来防守敌兵,在序列第i 号位置上建一座塔有Ci 的花费,且一个位置可以建任意多的塔,费用累加计算.有m 个区间[L1, R1], [ ...

  10. POJ3070 Fibonacci[矩阵乘法]

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...