数据结构图文解析之:二叉堆详解及C++模板实现
0. 数据结构图文解析系列
数据结构系列文章 |
---|
数据结构图文解析之:数组、单链表、双链表介绍及C++模板实现 |
数据结构图文解析之:栈的简介及C++模板实现 |
数据结构图文解析之:队列详解与C++模板实现 |
数据结构图文解析之:树的简介及二叉排序树C++模板实现. |
数据结构图文解析之:AVL树详解及C++模板实现 |
数据结构图文解析之:二叉堆详解及C++模板实现 |
1. 二叉堆的定义
二叉堆是一种特殊的堆,二叉堆是完全二叉树或近似完全二叉树。二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子树和右子树都是一个二叉堆。
当父节点的键值总是大于或等于任何一个子节点的键值时为最大堆。 当父节点的键值总是小于或等于任何一个子节点的键值时为最小堆。
2. 二叉堆的存储
二叉堆一般使用数组来表示。请回忆一下二叉树的性质,其中有一条性质:
性质五:如果对一棵有n个节点的完全二叉树的节点按层序编号(从第一层开始到最下一层,每一层从左到右编号,从1开始编号),对任一节点i有:
- 如果i=1 ,则节点为根节点,没有双亲。
- 如果2 * i > n ,则节点i没有左孩子 ;否则其左孩子节点为2*i . (n为节点总数)
- 如果2 * i+1>n ,则节点i没有右孩子;否则其右孩子节点为2*1+1.
简单来说:
- 如果根节点在数组中的位置是1,第n个位置的子节点分别在2n 与 2n+1,第n个位置的双亲节点分别在⌊i /2⌋。因此,第1个位置的子节点在2和3.
- 如果根节点在数组中的位置是0,第n个位置的子节点分别在2n+1与2n+2,第n个位置的双亲节点分别在⌊(i-1) /2⌋。因此,第0个位置的子节点在1和2.
得益于数组的随机存储能力,我们能够很快确定堆中节点的父节点与子节点。
下面以大顶堆展示一下堆的数组存储。
在本文中,我们以大顶堆为例进行堆的讲解。本文大顶堆的根节点位置为0.
3. 二叉堆的具体实现
在二叉堆上可以进行插入节点、删除节点、取出堆顶元素等操作。
3.1 二叉堆的抽象数据类型
/*大顶堆类定义*/
template <typename T>
class MaxHeap
{
public:
bool insert(T val); //往二叉堆中插入元素
bool remove(T data); //移除元素
void print(); //打印堆
T getTop(); //获取堆顶元素
bool createMaxHeap(T a[], int size);//根据指定的数组来创建一个最大堆
MaxHeap(int cap = 10);
~MaxHeap();
private:
int capacity; //容量,也即是数组的大小
int size; //堆大小,也即是数组中有效元素的个数
T * heap; //底层的数组
private:
void filterUp(int index); //从index所在节点,往根节点调整堆
void filterDown(int begin ,int end ); //从begin所在节点开始,向end方向调整堆
};
- 注意capacity与size的区别。capacity指的是数组的固有大小。size值数组中有效元素的个数,有效元素为组成堆的元素。
- heap为数组。
3.2 二叉堆的插入
在数组的最末尾插入新节点,然后自下而上地调整子节点与父节点的位置:比较当前结点与父节点的大小,若不满足大顶堆的性质,则交换两节点,从而使当前子树满足二叉堆的性质。时间复杂度为O(logn)。
当我们在上图的堆中插入元素12:
调整过程:
- 节点12添加在数组尾部,位置为11;
- 节点12的双亲位置为⌊11/2⌋ = 5,即节点6;节点12比节点6大,与节点6交换位置。交换后节点12的位置为5.
- 节点12的双亲位置为⌊ 5 /2⌋ = 2,即节点9;节点12比节点9大,与节点9交换位置。交换后节点12的位置为2.
- 节点12的双亲位置为⌊2/2⌋ = 1,即节点11;节点12比节点11大,与节点11交换位置。交换后节点12的位置为1.
- 12已经到达根节点,调整过程结束。
这个从下到上的调整过程为:
/*从下到上调整堆*/
/*插入元素时候使用*/
template <typename T>
void MaxHeap<T>::filterUp(int index)
{
T value = heap[index]; //插入节点的值,图中的12
while (index > 0) //如果还未到达根节点,继续调整
{
int indexParent = (index -1)/ 2; //求其双亲节点
if (value< heap[indexParent])
break;
else
{
heap[index] = heap[indexParent];
index = indexParent;
}
}
heap[index] = value; //12插入最后的位置
};
在真正编程的时候,为了效率我们不必进行节点的交换,直接用父节点的值覆盖子节点。最后把新节点插入它最后的位置即可。
基于这个调整函数,我们的插入函数为:
/*插入元素*/
template <typename T>
bool MaxHeap<T>::insert(T val)
{
if (size == capacity) //如果数组已满,则返回false
return false;
heap[size] = val;
filterUp(size);
size++;
return true;
};
3.3 二叉堆的删除
堆的删除是这样一个过程:用数组最末尾节点覆盖被删节点,再从该节点从上到下调整二叉堆。我们删除根节点12:
可能有人疑惑,删除后数组最末尾不是多了一个6吗?
的确,但我们把数组中有效元素的个数减少了一,最末尾的6并不是堆的组成元素。
这个从上到下的调整过程为:
/*从上到下调整堆*/
/*删除元素时候使用*/
template<typename T>
void MaxHeap<T>::filterDown(int current,int end)
{
int child = current * 2 + 1; //当前结点的左孩子
T value = heap[current]; //保存当前结点的值
while (child <= end)
{
if (child < end && heap[child] < heap[child+1])//选出两个孩子中较大的孩子
child++;
if (value>heap[child]) //无须调整;调整结束
break;
else
{
heap[current] = heap[child]; //孩子节点覆盖当前结点
current = child; //向下移动
child = child * 2 + 1;
}
}
heap[current] = value;
};
基于调整函数的删除函数:
/*删除元素*/
template<typename T>
bool MaxHeap<T>::remove(T data)
{
if (size == 0) //如果堆是空的
return false;
int index;
for (index = 0; index < size; index++) //获取值在数组中的索引
{
if (heap[index] == data)
break;
}
if (index == size) //数组中没有该值
return false;
heap[index] = heap[size - 1]; //使用最后一个节点来代替当前结点,然后再向下调整当前结点。
filterDown(index,size--);
return true;
};
3.4 其余操作
其余操作很简单,不在这里啰嗦。
/*打印大顶堆*/
template <typename T>
void MaxHeap<T>::print()
{
for (int i = 0; i < size; i++)
cout << heap[i] << " ";
};
/*获取堆顶元素*/
template <typename T>
T MaxHeap<T>::getTop()
{
if (size != 0)
return heap[0];
};
/*根据指定的数组来创建一个最大堆*/
template<typename T>
bool MaxHeap<T>::createMapHeap(T a[], int size)
{
if (size > capacity) // 堆的容量不足以创建
return false;
for (int i = 0; i < size; i++)
{
insert(a[i]);
}
return true;
};
4. 二叉堆代码测试
测试代码:
int _tmain(int argc, _TCHAR* argv[])
{
MaxHeap<int> heap(11);
//逐个元素构建大顶堆
for (int i = 0; i < 10; i++)
{
heap.insert(i);
}
heap.print();
cout << endl;
heap.remove(8);
heap.print();
cout << endl;
//根据指定的数组创建大顶堆
MaxHeap<int> heap2(11);
int a[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
heap2.createMaxHeap(a, 10);
heap2.print();
getchar();
return 0;
}
运行结果:
9 8 5 6 7 1 4 0 3 2
9 7 5 6 2 1 4 0 3
10 9 6 7 8 2 5 1 4 3
5. 大顶堆、小顶堆完整代码下载
二叉堆完整代码:https://github.com/huanzheWu/Data-Structure/blob/master/MaxHeap/MaxHeap/MaxHeap.h
小顶堆完整代码:https://github.com/huanzheWu/Data-Structure/blob/master/MinHeap/MinHeap/MinHeap.h
原创文章,转载请注明出处:http://www.cnblogs.com/QG-whz/p/5173112.html
数据结构图文解析之:二叉堆详解及C++模板实现的更多相关文章
- 数据结构图文解析之:AVL树详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 数据结构图文解析之:树的简介及二叉排序树C++模板实现.
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 二叉搜索树详解(Java实现)
1.二叉搜索树定义 二叉搜索树,是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值: 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根 ...
- AVL树(二叉平衡树)详解与实现
AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必 ...
- 数据结构图文解析之:队列详解与C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 数据结构图文解析之:直接插入排序及其优化(二分插入排序)解析及C++实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 数据结构图文解析之:数组、单链表、双链表介绍及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 数据结构图文解析之:栈的简介及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
随机推荐
- 【代码笔记】iOS-下拉选项cell
一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> //加入头文件 #import "ComboBo ...
- 添加 All Exceptions 断点后, 每次运行都会在 main.m 中断的一种解决方法
在本人项目添加导入和使用新的字体过程中,遇到一个很奇怪的问题: 项目开启了全局断点,但是每次启动都会运行在mian.m中断,点击下一步程序继续正常运行. 不知道是什么原因,于是google百度寻找答案 ...
- Storm基础
Storm基本概念 Storm是一个开源的实时计算系统,它提供了一系列的基本元素用于进行计算:Topology.Stream.Spout.Bolt等等. 在Storm中,一个实时应用的计算任务被打包作 ...
- AEAI Portal V3.5.4升级说明,门户集成平台
1 总体说明 本次升级是AEAI Portal的一次重要升级,主要扩展了开发社区(论坛).移动门户功能,同时修正一些功能BUG等,具体内容如下: 2 升级内容 功能扩展: 扩展开发社区导航 扩展移动门 ...
- 项 目 管 理 知 识 体 系 指 南 (PMBOK2008)
项 目 管 理 知 识 体 系 指 南 (第4版) PMBOK2008 输入 工具与技术 输出 4.项目整合管理 4.1 制定项目章程 4.1.1.1 项目工作说明书 4.1.2.1 专家判断 4.1 ...
- Linux平台卸载MySQL总结
如何在Linux下卸载MySQL数据库呢? 下面总结.整理了一下Linux平台下卸载MySQL的方法. MySQL的安装主要有三种方式:二进制包安装(Using Generic Binaries).R ...
- SSRS Reports 2008性能优化案例
我们的一个Reporting Service服务上部署了比较多的SSRS报表,其中有一个系统的SSRS报表部署后,执行时间相对较长,加之供应商又在ASP.NET页面里面嵌套了Reporting Ser ...
- oracle行转列与列转行
一.行转列 在有些应用场景中,如学生成绩.学生所有科目的成绩都保存到一张表里面,当我们需要以列表的形式显示出学生所对应的每一科目的成绩的时候,需要使用到行转列. 示例 -- 学生成绩表 create ...
- APUE环境配置
1.到http://www.apuebook.com/选择相应的版本下载源码,我的是2013版的 2.将apue.h拷到/usr/include目录下 3.将error.c拷到源文件下,编译的时候带上 ...
- Junit测试Controller(MockMVC使用),传输@RequestBody数据解决办法
一.单元测试的目的 简单来说就是在我们增加或者改动一些代码以后对所有逻辑的一个检测,尤其是在我们后期修改后(不论是增加新功能,修改bug),都可以做到重新测试的工作.以减少我们在发布的时候出现更过甚至 ...