给定字符串S, 求有多少长为$n$的字符串T, 使得S为T的子序列.

可以得到转移矩阵为

$\begin{equation}
A
=\begin{bmatrix}
25 & 0 & 0 &\cdots\ &0 &0\\
1 & 25 & 0 &\cdots\ &0 &0\\
0 & 1 & 25 & \cdots\ & 0 & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots &\vdots\\
0 & 0 & 0 &\cdots\ &1& 26\\
\end{bmatrix}
\end{equation}$

设$|S|=m$, 答案就为$A^n$的$(m,0)$项, 也就是说答案只与$S$的长度有关, 但是用矩阵幂的话复杂度是$O(m^3logn)$显然过不去.

实际上我们可以直接设$f(n)$为长为$n$的字符串的答案, 不去维护匹配的状态.

可以得到$f(n) =   \begin{cases} 0,  & n< m \\26f(n-1)+25^{n-m}\binom{n-1}{m-1}, & n\ge m \end{cases}$

前一部分表示在前$n-1$位已经有子序列等于$S$的情形, 那么第$n$位可以任取值.

后一部分表示在第$n$位时第一次出现子序列等于$S$的情形, 那么枚举前$m-1$位在$T$中的第一次出现位置, 其余位置可以任取其余的$25$个值.

#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head const int N = 1e5+10;
int t, clk;
char s[N];
vector<pii> g[N];
int ans[N], f[N];
ll p25[N], fac[N], ifac[N]; ll C(int n, int m) {
return fac[n]*ifac[n-m]%P*ifac[m]%P;
} int main() {
p25[0] = fac[0] = ifac[0] = 1;
REP(i,1,N-1) {
p25[i] = p25[i-1]*25%P;
fac[i] = fac[i-1]*i%P;
ifac[i] = inv(fac[i]);
}
scanf("%d%s", &t, s);
int now = strlen(s);
REP(i,1,t) {
int op, x;
scanf("%d", &op);
if (op==1) scanf("%s", s), now = strlen(s);
else scanf("%d", &x), g[now].pb(pii(x,++clk));
}
REP(i,1,N-1) if (g[i].size()) {
sort(g[i].begin(),g[i].end());
int sz = g[i].size(), now = 0;
while (now<sz&&g[i][now].x<i) ++now;
f[i-1] = 0;
REP(j,i,N-1) {
f[j] = (f[j-1]*26ll+C(j-1,i-1)*p25[j-i])%P;
while (now<sz&&g[i][now].x==j) ans[g[i][now++].y] = f[j];
if (now>=sz) break;
}
}
REP(i,1,clk) printf("%d\n",ans[i]);
}

CF 666C & 牛客 36D的更多相关文章

  1. 【牛客 错题集】Linux系统方面错题合集

    前言:牛客Linux322道全部刷完,有些题目较老,甚至考核5系统,现在7都出来了几年了 = = 还有些题目解析的很好部分也摘录了进来.很多涉及嵌入式开发的选择题同样的摘录的作为了解使用 ------ ...

  2. 2019牛客第八场多校 E_Explorer 可撤销并查集(栈)+线段树

    目录 题意: 分析: @(2019牛客暑期多校训练营(第八场)E_Explorer) 题意: 链接 题目类似:CF366D,Gym101652T 本题给你\(n(100000)\)个点\(m(1000 ...

  3. 牛客网程序员面试金典:1.1确定字符互异(java实现)

    问题描述: 请实现一个算法,确定一个字符串的所有字符是否全都不同.这里我们要求不允许使用额外的存储结构. 给定一个string iniString,请返回一个bool值,True代表所有字符全都不同, ...

  4. 牛客网 --java问答题

    http://www.nowcoder.com/ 主要是自己什么都不怎么会.在这里可以学习很多的! 第一天看题自己回答,第二天看牛客网的答案! 1 什么是Java虚拟机?为什么Java被称作是“平台无 ...

  5. 【面试笔试算法】牛客网一站通Offer编程题2016.4.19

    牛客网一站通offer (一)字符串变形 1. 题目: 对于一个给定的字符串,我们需要在线性(也就是O(n))的时间里对它做一些变形.首先这个字符串中包含着一些空格,就像"Hello Wor ...

  6. 牛客网《BAT面试算法精品课》学习笔记

    目录 牛客网<BAT面试算法精品课>学习笔记 牛客网<BAT面试算法精品课>笔记一:排序 牛客网<BAT面试算法精品课>笔记二:字符串 牛客网<BAT面试算法 ...

  7. 牛客小白月赛13 小A买彩票 (记忆化搜索)

    链接:https://ac.nowcoder.com/acm/contest/549/C来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言52428 ...

  8. 牛客小白月赛13-J小A的数学题 (莫比乌斯反演)

    链接:https://ac.nowcoder.com/acm/contest/549/J来源:牛客网 题目描述 小A最近开始研究数论题了,这一次他随手写出来一个式子,∑ni=1∑mj=1gcd(i,j ...

  9. C++版 - HDUoj 2010 3阶的水仙花数 - 牛客网

    版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - ...

随机推荐

  1. RocketMQ使用记录

    ---恢复内容开始--- he following softwares are assumed installed: 64bit OS, Linux/Unix/Mac is recommended; ...

  2. 使用django uwsgi 导致磁盘满

    lsof |grep delete |sort -nrk 7|more kill 掉这些进程

  3. 邻居子系统 之 状态定时器回调neigh_timer_handler

    概述 在分配邻居子系统之后,会设置定时器来处理那些需要定时器处理的状态,定时器回调函数为neigh_timer_handler:函数会根据状态机变换规则对状态进行切换,切换状态后,如果需要更新输出函数 ...

  4. SpringMVC和AJAX交互

    在实际开发中我们经常需要前后台交互,那么springmvc与ajax之间交互这里记录下在实际开发中遇到的细节问题. jsp页面: <fieldset id="login" s ...

  5. POJ 1789 -- Truck History(Prim)

     POJ 1789 -- Truck History Prim求分母的最小.即求最小生成树 #include<iostream> #include<cstring> #incl ...

  6. mac中的word内容丢失

    改了一晚上好不容易快搞完了,结果1万字的内容丢了,并且不知道自己当时怎么想的还清理了回收站 还是用mac自带的工具吧,同时代码也要及时上传github

  7. python之scrapy的FormRequest模拟POST表单自动登陆

    1.FormRequest表单实现自动登陆 # -*- coding: utf-8 -*- import scrapy import re class GithubSpider(scrapy.Spid ...

  8. nodejs获取常见疾病数据示例

    日常生活中有一些常见的疾病,这个可以通过百度等搜索到,但是如果你要完成一款app或者小程序.网站之类的该如何来获取常见疾病的信息呢?首先想到的是通过爬虫爬取数据,然后整理搜索....其实这种方法还是太 ...

  9. k8s-高可用多主master配置

    准备主机 centos7镜像 node1: 192.168.0.101 node2: 192.168.0.102 node3: 192.168.0.103 vip: 192.168.0.104 配置s ...

  10. vim在文件末尾增加内容

    1.跳到文本的最后一行:按“G”,即“shift+g” 2.跳到最后一行的最后一个字符 : 先重复1的操作即按“G”,之后按“$”键,即“shift+4”.3  o:在当前行下面插入一个新行O:在当前 ...