逻辑回归(Logistic Regression)二分类原理及python实现
本文目录:
1. sigmoid function (logistic function)
2. 逻辑回归二分类模型
3. 神经网络做二分类问题
4. python实现神经网络做二分类问题
-----------------------------------------------------------------------------------
1. sigmoid unit
对于一个输入样本$X(x_1,x_2, ..., x_n)$,sigmoid单元先计算$x_1,x_2, ..., x_n$的线性组合:
$z = {{\bf{w}}^T}{\bf{x}} = {w_1}{x_1} + {w_2}{x_2} + ... + {w_n}{x_n}$
然后把结果$z$输入到sigmoid函数:
$\sigma (z) = \frac{1}{{1 + {e^{ - z}}}}$
sigmoid函数图像:
sigmoid函数有个很有用的特征,就是它的导数很容易用它的输出表示,即
$\frac{{\partial \sigma (z)}}{{\partial z}} = \frac{{{e^{ - z}}}}{{{{(1 + {e^{ - z}})}^2}}} = \frac{1}{{1 + {e^{ - z}}}} \cdot \frac{{{e^{ - z}}}}{{1 + {e^{ - z}}}} = \frac{1}{{1 + {e^{ - z}}}} \cdot (1 - \frac{1}{{1 + {e^{ - z}}}}) = \sigma (z)(1 - \sigma (z))\begin{array}{*{20}{c}}
{} & {} & {} & {(1)} \\
\end{array}$
2. 逻辑回归二分类模型
把sigmoid函数应用到二分类中,当$\sigma(z)>=0.5$,输出标签$y=1$;当$\sigma(z)<0.5$,输出标签$y=0$。并定义如下条件概率:
$P\{ Y = 1|\bf{x}\} = p(x) = \frac{1}{{1 + {e^{ - {{\bf{w}}^T}\bf{x}}}}}$
$P\{ Y = 0|\bf{x}\} = 1 - p(\bf{x}) = \frac{{{e^{ - {{\bf{w}}^T}\bf{x}}}}}{{1 + {e^{ - {{\bf{w}}^T}\bf{x}}}}}$
一个事件的几率($odds$)是指该事件发生的概率和该事件不发生的概率的比值。如果事件发生的概率是$p$,那么该事件的几率是$\frac{p}{1-p}$,该事件的对数几率($log$ $odds$)或$logit$函数是$logit(p)=ln\frac{p}{1-p}$。在逻辑回归二分类模型中,事件的对数几率是
$\ln \frac{{P\{ Y = 1|\bf{x}\} }}{{P\{ Y = 0|\bf{x}\} }} = \ln \frac{{p(x)}}{{1 - p(\bf{x})}} = \ln ({e^{{{\bf{w}}^T}\bf{x}}}) = {{\bf{w}}^T}\bf{x}$
上式表明,在逻辑回归二分类模型中,输出$y=1$的对数几率是输入$\bf{x}$的线性函数。
在逻辑回归二分类模型中,对于给定的数据集$T = \{ ({{\bf{x}}_1},{y_1}),({{\bf{x}}_2},{y_2}),...,({{\bf{x}}_n},{y_n})\}$,可以应用极大似然估计法估计模型参数${{\bf{w}}^T} = ({w_1},{w_2},...,{w_n})$。
设:
$\begin{array}{l}
P\{ Y = 1|\bf{x}\} = \sigma ({{\bf{w}}^T}{\bf{x}}) \\
P\{ Y = 0|\bf{x}\} = 1 - \sigma ({{\bf{w}}^T}{\bf{x}}) \\
\end{array}$
似然函数为:
$\prod\limits_{i = 1}^n {{{[\sigma ({{\bf{w}}^T}{{\bf{x}}_i})]}^{{y_i}}}} {[1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})]^{1 - {y_i}}}$
对数似然函数为:
$L({\bf{w}}) = \sum\limits_{i = 1}^n {[{y_i}\log } \sigma ({{\bf{w}}^T}{{\bf{x}}_i}) + (1 - {y_i})\log (1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i}))]$
对$L({\bf{w}})$取极大值,
$\frac{{\partial L({\bf{w}})}}{{\partial{w_j}}} = \sum\limits_{i = 1}^n {[\frac{{{y_i}}}{{\sigma ({{\bf{w}}^T}{{\bf{x}}_i})}}} - \frac{{1 - {y_i}}}{{1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})}}]\frac{{\partial \sigma ({{\bf{w}}^T}{{\bf{x}}_i})}}{{\partial ({{\bf{w}}^T}{{\bf{x}}_i})}}\frac{{\partial ({{\bf{w}}^T}{{\bf{x}}_i})}}{{\partial {w_j}}}$
应用式(1),有
$\frac{{\partial L({\bf{w}})}}{{\partial{w_j}}} = \sum\limits_{i = 1}^n {[\frac{{{y_i} - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})}}{{\sigma ({{\bf{w}}^T}{{\bf{x}}_i})[1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})]}}} ] \cdot \sigma ({{\bf{w}}^T}{{\bf{x}}_i})[1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})] \cdot {x_{ij}}$
$\frac{{\partial L({\bf{w}})}}{{\partial{w_j}}} = \sum\limits_{i = 1}^n [ {y_i} - \sigma ({{\bf{w}}^T}{{\bf{x}}_i})] \cdot {x_{ij}}$
令$\frac{{\partial L({\bf{w}})}}{{{w_j}}}=0$即可得到参数${\bf{w}}$的估计值。
3. 神经网络做二分类问题,交叉熵损失函数
在阈值函数是sigmoid函数的神经网络中,针对二分类问题,交叉熵损失函数是比较合适的损失函数,其形式为(和上一节的对数似然函数只相差一个负号):
$C =- \frac{1}{n}\sum\limits_{i = 1}^n {[{y_i}\log } \sigma ({{\bf{w}}^T}{{\bf{x}}_i}) + (1 - {y_i})\log (1 - \sigma ({{\bf{w}}^T}{{\bf{x}}_i}))]$
在神经网络的训练过程中,权重的迭代过程为:
$w_j^{k + 1} = w_j^k - \eta \frac{{\partial C}}{{\partial w_j^k}}$
在损失函数是交叉熵损失函数的情况下,
$\frac{{\partial C}}{{\partial w_j^k}} = \sum\limits_{i = 1}^n [ \sigma ({{\bf{w}}^T}{{\bf{x}}_i}) - {y_i}] \cdot {x_{ij}} = ({{\bf{x}}^T}[\sigma ({{\bf{w}}^T}{\bf{x}}) - {\bf{y}}] )_j= ({{\bf{x}}^T}{\bf{e}})_j$
其中,${\bf{y}}$是由样本标签构成的列向量,等号后的两个式子的下标$j$表示向量的第$j$个分量。
4. python实现神经网络做二分类问题
神经网络结构:一个sigmoid单元
训练数据:总共500个训练样本,链接https://pan.baidu.com/s/1qWugzIzdN9qZUnEw4kWcww,提取码:ncuj
损失函数:交叉熵损失函数
代码如下:
import numpy as np
import matplotlib.pyplot as plt class Logister():
def __init__(self, path):
self.path = path def file2matrix(self, delimiter):
fp = open(self.path, 'r')
content = fp.read() # content现在是一行字符串,该字符串包含文件所有内容
fp.close()
rowlist = content.splitlines() # 按行转换为一维表
# 逐行遍历
# 结果按分隔符分割为行向量
recordlist = [list(map(float, row.split(delimiter))) for row in rowlist if row.strip()]
return np.mat(recordlist) def drawScatterbyLabel(self, dataSet):
m, n = dataSet.shape
target = np.array(dataSet[:, -1])
target = target.squeeze() # 把二维数据变为一维数据
for i in range(m):
if target[i] == 0:
plt.scatter(dataSet[i, 0], dataSet[i, 1], c='blue', marker='o')
if target[i] == 1:
plt.scatter(dataSet[i, 0], dataSet[i, 1], c='red', marker='o') def buildMat(self, dataSet):
m, n = dataSet.shape
dataMat = np.zeros((m, n))
dataMat[:, 0] = 1
dataMat[:, 1:] = dataSet[:, :-1]
return dataMat def logistic(self, wTx):
return 1.0/(1.0 + np.exp(-wTx)) def classfier(self, testData, weights):
prob = self.logistic(sum(testData*weights)) # 求取概率--判别算法
if prob > 0.5:
return 1
else:
return 0 if __name__ == '__main__':
logis = Logister('testSet.txt') print('1. 导入数据')
inputData = logis.file2matrix('\t')
target = inputData[:, -1]
m, n = inputData.shape
print('size of input data: {} * {}'.format(m, n)) print('2. 按分类绘制散点图')
logis.drawScatterbyLabel(inputData) print('3. 构建系数矩阵')
dataMat = logis.buildMat(inputData) alpha = 0.1 # learning rate
steps = 600 # total iterations
weights = np.ones((n, 1)) # initialize weights
weightlist = [] print('4. 训练模型')
for k in range(steps):
output = logis.logistic(dataMat * np.mat(weights))
errors = target - output
print('iteration: {} error_norm: {}'.format(k, np.linalg.norm(errors)))
weights = weights + alpha*dataMat.T*errors # 梯度下降
weightlist.append(weights) print('5. 画出训练过程')
X = np.linspace(-5, 15, 301)
weights = np.array(weights)
length = len(weightlist)
for idx in range(length):
if idx % 100 == 0:
weight = np.array(weightlist[idx])
Y = -(weight[0] + X * weight[1]) / weight[2]
plt.plot(X, Y)
plt.annotate('hplane:' + str(idx), xy=(X[0], Y[0]))
plt.show() print('6. 应用模型到测试数据中')
testdata = np.mat([-0.147324, 2.874846]) # 测试数据
m, n = testdata.shape
testmat = np.zeros((m, n+1))
testmat[:, 0] = 1
testmat[:, 1:] = testdata
print(logis.classfier(testmat, np.mat(weights))) # weights为前面训练得出的
训练600个iterations,每100个iterations输出一次训练结果,如下图:
【参考文献】
[1] 《机器学习》Mitshell,第四章
[2] 《机器学习算法原理与编程实践》郑捷,第五章第二节
[3] Neural Network and Deep Learning,Michael Nielsen,chapter 3
逻辑回归(Logistic Regression)二分类原理及python实现的更多相关文章
- 机器学习 (三) 逻辑回归 Logistic Regression
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- ML 逻辑回归 Logistic Regression
逻辑回归 Logistic Regression 1 分类 Classification 首先我们来看看使用线性回归来解决分类会出现的问题.下图中,我们加入了一个训练集,产生的新的假设函数使得我们进行 ...
- 机器学习总结之逻辑回归Logistic Regression
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...
- Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!
原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...
- 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...
- 逻辑回归(Logistic Regression)详解,公式推导及代码实现
逻辑回归(Logistic Regression) 什么是逻辑回归: 逻辑回归(Logistic Regression)是一种基于概率的模式识别算法,虽然名字中带"回归",但实际上 ...
- 机器学习(四)--------逻辑回归(Logistic Regression)
逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的 线性方程拟合的是连 ...
- 机器学习入门11 - 逻辑回归 (Logistic Regression)
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...
- [Machine Learning] 逻辑回归 (Logistic Regression) -分类问题-逻辑回归-正则化
在之前的问题讨论中,研究的都是连续值,即y的输出是一个连续的值.但是在分类问题中,要预测的值是离散的值,就是预测的结果是否属于某一个类.例如:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈 ...
随机推荐
- 集合(一)-Java中Arrays.sort()自定义数组的升序和降序排序
默认升序 package peng; import java.util.Arrays; public class Testexample { public static void main(Stri ...
- Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock'
方法:重启MySQL 在命令行执行: /etc/init.d/mysql start
- Qt 窗体增加滚动条
//滚动区域 m_ScrollArea = new QScrollArea(parentWidget()); m_ScrollArea->setGeometry(, , , ); //垂直滚动条 ...
- 09 深科技相关表结构 (未完成)、git
1.深科技相关 1. 深科技表结构(6表) 深科技4张+2张用户表 - 深科技 用户表 用户Token 文章来源 文章表 通用评论表 通用收藏表 # ######################## ...
- 获取节点 document.getElementBy{Id,Name,TagName,ClassName
document.getElementById(" "); document.getElementByName(" "); document.getElemen ...
- 原型模式(Prototype)---创建型
1 基础知识 定义:原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象.特征:不需要知道任何创建的细节,不调用构造方法.本质:克隆生成对象. 原型模式会要求对象实现一个可以“克隆”自身的接口 ...
- Splay - restudy
https://www.zybuluo.com/wsndy-xx/note/1136246 图1 图2
- 【原创】洛谷 LUOGU P3371 【模板】单源最短路径
P3371 [模板]单源最短路径 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出 ...
- Java 显示锁 之 重入锁 ReentrantLock(七)
ReentrantLock 重入锁简介 重入锁 ReentrantLock,顾名思义,就是支持同一个线程对资源的重复加锁.另外,该锁还支持获取锁时的公平与非公平性的选择. 重入锁 ReentrantL ...
- CF981D
CF981D 题意: 给你n个数,要求你分成k堆.每堆的内部加和,每堆之间是相与.问最大的值. 解法: 二进制下最大的数的所有位一定是1,所以贪心去找是否最大一定是正确的. 然后DP记录+贪心就可以A ...