四分图匹配
题目描述
一天晚上,zzh 在做梦,忽然梦见了她。
见到她,zzh 也不去看她,只顾低头自语……
“噫,OI 这个东西,真是无奇不有。”
“嘿,你又学了什么?”
“嗯,学到了一种算法,”zzh 装作很神秘的样子,“在生活中有着广泛的应
用,这个算法由匈牙利数学家 Edmonds 于 1965 年提出……”
“哦,那是二分图匹配?”
“咦,你不学 OI,你怎么知道?”
她微微一笑。
“哼!你又不学 OI,你说的什么二分图匹配,只是道听途说而已吧?”
“既然你这么说,那就给你出一道题。听好咯!”
定义四分图,为能将其点集分成四部分,各部分内部没有边的特殊无向图。
定义环的长度,为环中的边数。
定义四分图的一个匹配,为在四分图的边集中提取出一个子集,使得集合中
的边连起来之后,能够构成若干(设为 K)个长度为四的环,每个点最多属于一
个环,并且环上的四个顶点恰好依次取自四分图的四个子点集。其中 K 定义为
四分图的匹配数。
定义四分图的最大匹配,为匹配数最大的匹配方案。
定义四分图的两个匹配是不同的,仅当至少有一条边在一个匹配中是匹配边,
在另一个匹配中不是匹配边。
定义四分图的最大匹配方案数 S,为四分图最大匹配集合的元素个数。
现在对于一张的四分图,要求求其最大匹配数,与其最大匹配方案数。
图的总点数、总边数均不超过 100。
zzh 听完,好不容易记住了定义,结果发现并不会做……于是他只好低下头:
“唉,这题太难了……”
“好吧,那我把这题弱化一下,我把图改成一张特殊的四分图。”
记四个点集分别为 A、B、C、D,给出的四分图按如下规则构造:
点编号(均为整数)范围:
A 集:1..N B 集:1..N C 集:1..2N-1 D 集:1..2N-1
连边情况:
对于所有满足 1≤i,j≤N 的数字对,均有边
A[i]------------------B[j]
| |
C[N+i-j]------D[i+j-1] “既然图已经满足特殊性了,那么我也应该拿掉一个限制。”她笑着说,“我
把边数不超过 100 这个条件去掉。点数的范围就不更改了。”
zzh 又开始苦思冥想,他想了好多好多,想了好久好久,但是最终……
“我不会做……”zzh 低下了头,声音压得很低很低。
“服不服?”
“不服!”
“好吧,看你不服,我把问题再弱化一下!我把点数限制设为不超过 7,这
下,你总应该能做出来了吧?”
zzh 又想了好久好久,结果发现仍然是不会做……这时,床头的闹铃划破了
梦的喧嚣……
现在,zzh 只想问问大家,这题弱化版的弱化版,到底怎么做?
输入描述
一行一个数字,N。
输出描述
第一行输出 K 的最大值,第二行输出 S。
输入样例
2
输出样例
2
4
数据范围
测试点编号 N=3 4 5 6 7
 
sol:打表好题。。。
#include <cstdio>

bool ab[][],ac[][],bd[][],cd[][];
int e[];
int i,j,n;
long long s; inline void dfs(int x,int bb,int cc,int dd)
{
if (x==n+)
s++;
else
{
for (int b=bb;b!=;b=b-(b&(-b)))
{
int i=e[b&(-b)];
if (ab[x][i])
for (int c=cc;c!=;c=c-(c&(-c)))
{
int j=e[c&(-c)];
if (ac[x][j])
for (int d=dd;d!=;d=d-(d&(-d)))
{
int k=e[d&(-d)];
if ((bd[i][k]) && (cd[j][k]))
dfs(x+,bb^(<<(i-)),cc^(<<(j-)),dd^(<<(k-)));
}
}
}
}
return;
} int main()
{
scanf("%d",&n);
for (i=;i<=n;i++)
for (j=;j<=n;j++)
ab[i][j]=ac[i][n+i-j]=bd[j][i+j-]=cd[n+i-j][i+j-]=true;
for (i=,j=;j<=*n;i=i<<,j++)
e[i]=j;
dfs(,(<<n)-,(<<(*n-))-,(<<(*n-))-);
printf("%d\n%lld\n",n,s);
return ;
}

詹神打表代码

#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=; bool f=; char ch=' ';
while(!isdigit(ch)) {f|=(ch=='-'); ch=getchar();}
while(isdigit(ch)) {s=(s<<)+(s<<)+(ch^); ch=getchar();}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<) {putchar('-'); x=-x;}
if(x<) {putchar(x+''); return;}
write(x/); putchar((x%)+'');
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
int n;
int main()
{
freopen("quadripartite.in","r",stdin);
freopen("quadripartite.out","w",stdout);
R(n);
Wl(n);
if(n==) puts("");
else if(n==) puts("");
else if(n==) puts("");
else if(n==) puts("");
else puts("");
return ;
}

7.26T1四分图匹配的更多相关文章

  1. SQL中常用模糊查询的四种匹配模式&&正则表达式

    执行数据库查询时,有完整查询和模糊查询之分.一般模糊语句如下:SELECT 字段 FROM 表 WHERE 某字段 Like 条件 其中关于条件,SQL提供了四种匹配模式:1.%:表示任意0个或多个字 ...

  2. UVaLive 7375 Hilbert Sort (递归,四分图,模拟)

    题意:告诉你一条希尔伯特曲线的大小,然后给你n 个人,及n 个人的坐标,你的起点是左下角,终点是右下角,按照希尔伯特的曲线去走,按照这个顺序给n个人排序, 按顺序输出每个人的名字! 析:这就是一个四分 ...

  3. UVA - 297Quadtrees(四分图)

    Quadtrees Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Submit Statu ...

  4. SQL模糊查询条件的四种匹配模式

    执行数据库查询时,有完整查询和模糊查询之分. 一般模糊语句格式如下: SELECT 字段 FROM 表 WHERE 某字段 LIKE 条件 其中关于条件,SQL提供了四种匹配模式: 1.% :表示任意 ...

  5. spring cloud: zuul(四): 正则表达式匹配其他微服务(给其他微服务加版本号)

    spring cloud: zuul(四): 正则表达式匹配其他微服务(给其他微服务加版本号) 比如我原来有,spring-boot-user微服务,后台进行迭代更新,另外其了一个微服务: sprin ...

  6. SQL模糊查询的四种匹配模式

    执行数据库查询时,有完整查询和模糊查询之分,一般模糊语句如下: SELECT 字段 FROM 表 WHERE 某字段 Like 条件 一.四种匹配模式 关于条件,SQL提供了四种匹配模式: 1.% 表 ...

  7. SQL 模糊查询条件的四种匹配模式

    转: 执行数据库查询时,有完整查询和模糊查询之分. 一般模糊语句格式如下: SELECT 字段 FROM 表 WHERE 某字段 LIKE 条件; 其中,关于条件,SQL提供了四种匹配模式: 1.%: ...

  8. QL Server 中四种匹配符的含义

    SQL中我们会见到很多的匹配符,下面解释一下 % 代表零个或者多个任意字符 _ 代表一个任意字符 [] 指定范围内的任意单个字符 [^] 不在指定范围内的任意单个字符 带有匹配符的字符串必须使用引号引 ...

  9. HDU2819-Swap-二分图匹配

    把矩阵上的1建成边,把边建成点 然后跑一个二分图匹配,就找到了主对角线的元素,之后排个序就可以了 /*------------------------------------------------- ...

随机推荐

  1. java.lang.ClassCastException: com.sun.proxy.$Proxy4 cannot be cast

    解决方案 在配置文件中配置proxy-target-class="true" <aop:aspectj-autoproxy proxy-target-class=" ...

  2. mysql5.7主主(双主)复制

    在server1上操作 vi /etc/my.cnf 修改或添加下面这几行: server-id=1 log-bin=mysql-bin # 启用二进制日志 auto-increment-increm ...

  3. java 框架-模板引擎FreeMarker

    https://www.cnblogs.com/itdragon/p/7750903.html FreeMarker是一个很值得去学习的模版引擎.它是基于模板文件生成其他文本的通用工具.本章内容通过如 ...

  4. Project Oberon

    Project Oberon Project Oberon  http://www.projectoberon.com/ Project Oberon 28.11.2018 / 11.12.2018 ...

  5. vue slot的使用(transform动画)

    slot的说明就看vue的官方文档  但是有点模糊 理解: 是对组件的扩展,通过slot插槽向组件内部指定位置传递内容,通过slot可以父子传参:   解决什么问题:正常情况下,<Child&g ...

  6. leetcode-55. Jump Game · Array

    题面 这个题面挺简单的,不难理解.给定非负数组,每一个元素都可以看作是一个格子.其中每一个元素值都代表当前可跳跃的格子数,判断是否可以到达最后的格子. 样例 Input: [2,3,1,1,4] Ou ...

  7. js 小细节(持续更新)

    1.在对数据进行操作时,一定要考虑数据里面每一个value值是否存在 $.each(data, function(i, item){ if(item == null || item.firstFram ...

  8. JAVA处理数字与中文数字互转(最大处理数字不超过万兆即:9999999999999999.9999)

    package practice; import java.util.Arrays; /** * 数字与中文数字互转(最大处理数字不超过万兆即:9999999999999999.9999) * @au ...

  9. MySQL之Text Protocol

    1)[01]COM_QUIT 告诉服务器,客户端想要关闭连接 返回:或者关闭一个连接或者一个OK_Packet 有效负载: 1 [01]COM_QUIT 字段: command(1)--0x01 CO ...

  10. ubuntu python3虚拟环境

    mkvirtualenv flow_chart -p /usr/bin/python3.6 #  命令    环境名    -p   python所在路径 pip install -r request ...