题意

给一个$ n \times m$ 的网格,每个格子里有一个数字,非 \(0\) 即 \(1\),行从上往下依次编号为 \(1, 2, \cdots, n\),列从左往右依次编号为 \(1, 2, \cdots, m\)。

给 \(q\) 次操作,每次给定一个以 \((x_1,y_1)\) 为左上角,\((x_2,y_2)\) 为右下角的矩形内所有格子里的数字都变成 \(1\)。问每次操作之后,所有数字为 \(1\)的格子构成的四连通块的个数。

\(1<=n,m<=1000\)

\(1<=q<=30000\)

分析

搬运官方题解..

Code

#include<bits/stdc++.h>
#define fi first
#define se second
#define lson l,mid,p<<1
#define rson mid+1,r,p<<1|1
#define pb push_back
#define ll long long
using namespace std;
const int inf=1e9;
const int mod=1e9+7;
const int maxn=1e6+10;
int n,m,q;
char s[1010][1010];
int id[1010][1010],f[maxn];
int xx[]={0,0,1,-1};
int yy[]={1,-1,0,0};
int g[1010][1010];
int ans,tot;
int find(int k){
if(k==f[k]) return k;
return f[k]=find(f[k]);
}
int ff(int x,int k){
if(k==g[x][k]) return k;
return g[x][k]=ff(x,g[x][k]);
}
void dfs(int x,int y){
++ans,id[x][y]=++tot;f[tot]=tot;
int rx=ff(x,y),ry=ff(x,y+1);
if(rx!=ry) g[x][rx]=ry;
for(int i=0;i<4;i++){
int dx=x+xx[i];
int dy=y+yy[i];
if(dx<1||dx>n||dy<1||dy>m||!id[dx][dy]) continue;
int rx=find(id[x][y]),ry=find(id[dx][dy]);
if(rx!=ry) f[rx]=ry,--ans;
}
}
int main(){
//ios::sync_with_stdio(false);
//freopen("in","r",stdin);
scanf("%d%d",&n,&m);
int tot=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m+1;j++) g[i][j]=j;
for(int i=1;i<=n;i++){
scanf("%s",s[i]+1);
for(int j=1;j<=m;j++) if(s[i][j]=='1'){
dfs(i,j);
}
}
scanf("%d",&q);
while(q--){
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
for(int i=x1;i<=x2;i++){
for(int j=ff(i,y1);j<=y2;j=ff(i,y1)){
dfs(i,j);
}
}
printf("%d\n",ans);
}
return 0;
}

Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(困难版) 并查集的更多相关文章

  1. Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)

    来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...

  2. Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」

    来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...

  3. Comet OJ Contest #13 D

    Comet OJ Contest #13 D \(\displaystyle \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} a^{i} b^{n- ...

  4. Comet OJ Contest #13 简要题解

    C2 首先用并查集维护\(1\)的连通块,然后用另外一个并查集维护第\(i\)行中,第\(j\)列之后的第一个\(0\)的位置,就是如果当前位置是\(1\)那么它的父亲是它右边的格子,否则是它自己. ...

  5. Comet OJ - Contest #13

    Rank53. 第一次打这种比赛.还是有不少问题的,以后改吧. A题WA了两次罚了不少时. C写到一半发现只能过1,就先弃了. D一眼没看出来.第二眼看出来就是一个类似于复数的快速幂. 然后B切了. ...

  6. Comet OJ - Contest #13-C2

    Comet OJ - Contest #13-C2 C2-佛御石之钵 -不碎的意志-」(困难版) 又是一道并查集.最近做过的并查集的题貌似蛮多的. 思路 首先考虑,每次处理矩形只考虑从0变成1的点.这 ...

  7. Comet OJ - Contest #2 简要题解

    Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...

  8. Comet OJ - Contest #2简要题解

    Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...

  9. Comet OJ - Contest #4--前缀和

    原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...

随机推荐

  1. Redis键的序列化和反序列化

    序列化 命令名称:DUMP 语法:DUMP key 功能:序列化给定key,并返回被序列化的值.序列化的值不包括任何生存时间信息. 返回值:如果key不存在,那么返回nil.否则返回序列化之后的值 反 ...

  2. Spring Boot 全局Exception处理

    一.代码如下 package com.zxguan; import org.springframework.web.bind.annotation.ControllerAdvice; import o ...

  3. 在Angular中使用$ compile

    转载自:http://odetocode.com/blogs/scott/archive/2014/05/07/using-compile-in-angular.aspx 在AngularJS中创建一 ...

  4. Linux每隔1秒kill掉cpu大于50%的进程

    1.新建/test/killcpu.sh shell脚本 并授予权限0755#!/bin/bashps axf -o "pid %cpu" | awk '{if($2>=50 ...

  5. .net Core CLR

    .net Core CLR是开源的.大部分文件是C++写成.这样他就可以编译后再不同的平台运行. https://github.com/dotnet/coreclr

  6. 一次腾讯云centos服务器被入侵的处理

    昨天一大早,我还没到公司呢,就收到腾讯云安全中心发来的服务器异常登录告警,登录控制台一看,ip还是美国的,一脸懵逼.由于本人之前也没有过处理服务器入侵的经验,而且这台服务器目前还没有部署商用系统,所以 ...

  7. VBA宏注释(四)

    注释用于记录程序逻辑和用户信息,其他程序员将来可以阅读并理解相同的代码无缝工作. 它包括由开发者,修改者以及还可以包括合并逻辑的信息. 解释器在执行时忽略注释. VBA中的注释用两种方法表示,它们分别 ...

  8. Oracle学习笔记——Linux下开启Oracle

    1.开启数据库 sqlplus  /  as sysdba startup 2.启动监听:lsnrctl  start; 查看监听状态:lsnrctl status; 3.登入数据库 Linux 设置 ...

  9. 面试总结关于Spring面试问题(精选)

    1.什么是Spring? Spring是一个反转控制IOC和AOP的开发框架和平台. 2.解释一下Spring? 轻量 : Spring 在大小和透明度上是轻量的,Spring基本核心版本大概只有1M ...

  10. idou老师教你学Istio12 : Istio 实现流量镜像

    微服务为我们带来了快速开发部署的优秀特性,而如何降低开发和变更的风险成为了一个问题.Istio的流量镜像,也称为影子流量,是将生产流量镜像拷贝到测试集群或者新的版本中,在引导实时流量之前进行测试,可以 ...