题意

给一个$ n \times m$ 的网格,每个格子里有一个数字,非 \(0\) 即 \(1\),行从上往下依次编号为 \(1, 2, \cdots, n\),列从左往右依次编号为 \(1, 2, \cdots, m\)。

给 \(q\) 次操作,每次给定一个以 \((x_1,y_1)\) 为左上角,\((x_2,y_2)\) 为右下角的矩形内所有格子里的数字都变成 \(1\)。问每次操作之后,所有数字为 \(1\)的格子构成的四连通块的个数。

\(1<=n,m<=1000\)

\(1<=q<=30000\)

分析

搬运官方题解..

Code

#include<bits/stdc++.h>
#define fi first
#define se second
#define lson l,mid,p<<1
#define rson mid+1,r,p<<1|1
#define pb push_back
#define ll long long
using namespace std;
const int inf=1e9;
const int mod=1e9+7;
const int maxn=1e6+10;
int n,m,q;
char s[1010][1010];
int id[1010][1010],f[maxn];
int xx[]={0,0,1,-1};
int yy[]={1,-1,0,0};
int g[1010][1010];
int ans,tot;
int find(int k){
if(k==f[k]) return k;
return f[k]=find(f[k]);
}
int ff(int x,int k){
if(k==g[x][k]) return k;
return g[x][k]=ff(x,g[x][k]);
}
void dfs(int x,int y){
++ans,id[x][y]=++tot;f[tot]=tot;
int rx=ff(x,y),ry=ff(x,y+1);
if(rx!=ry) g[x][rx]=ry;
for(int i=0;i<4;i++){
int dx=x+xx[i];
int dy=y+yy[i];
if(dx<1||dx>n||dy<1||dy>m||!id[dx][dy]) continue;
int rx=find(id[x][y]),ry=find(id[dx][dy]);
if(rx!=ry) f[rx]=ry,--ans;
}
}
int main(){
//ios::sync_with_stdio(false);
//freopen("in","r",stdin);
scanf("%d%d",&n,&m);
int tot=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=m+1;j++) g[i][j]=j;
for(int i=1;i<=n;i++){
scanf("%s",s[i]+1);
for(int j=1;j<=m;j++) if(s[i][j]=='1'){
dfs(i,j);
}
}
scanf("%d",&q);
while(q--){
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
for(int i=x1;i<=x2;i++){
for(int j=ff(i,y1);j<=y2;j=ff(i,y1)){
dfs(i,j);
}
}
printf("%d\n",ans);
}
return 0;
}

Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(困难版) 并查集的更多相关文章

  1. Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)

    来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...

  2. Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」

    来源:Comet OJ - Contest #13 芝士相关: 复平面在信息学奥赛中的应用[雾 其实是道 sb 题??? 发现原式貌似十分可二项式定理,然后发现确实如此 我们把 \(a^i\) 替换成 ...

  3. Comet OJ Contest #13 D

    Comet OJ Contest #13 D \(\displaystyle \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} a^{i} b^{n- ...

  4. Comet OJ Contest #13 简要题解

    C2 首先用并查集维护\(1\)的连通块,然后用另外一个并查集维护第\(i\)行中,第\(j\)列之后的第一个\(0\)的位置,就是如果当前位置是\(1\)那么它的父亲是它右边的格子,否则是它自己. ...

  5. Comet OJ - Contest #13

    Rank53. 第一次打这种比赛.还是有不少问题的,以后改吧. A题WA了两次罚了不少时. C写到一半发现只能过1,就先弃了. D一眼没看出来.第二眼看出来就是一个类似于复数的快速幂. 然后B切了. ...

  6. Comet OJ - Contest #13-C2

    Comet OJ - Contest #13-C2 C2-佛御石之钵 -不碎的意志-」(困难版) 又是一道并查集.最近做过的并查集的题貌似蛮多的. 思路 首先考虑,每次处理矩形只考虑从0变成1的点.这 ...

  7. Comet OJ - Contest #2 简要题解

    Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...

  8. Comet OJ - Contest #2简要题解

    Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...

  9. Comet OJ - Contest #4--前缀和

    原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...

随机推荐

  1. 解决springboot乱码和window cmd乱码

    @Bean public FilterRegistrationBean filterRegistrationBean() { FilterRegistrationBean registration = ...

  2. docker系列3--dockerd配置文件

    dockerd启动配置 docker通信方式选择 docker默认以sock文件方式提供接口,要开放tcp接口远程调用,需要修改配置文件: The Docker daemon can listen f ...

  3. Ctrl+R快速启动应用程序

    1.打开注册表 Ctrl+R搜索框中键入“regedit”,回车打开注册表 2.找到HKEY_LOCAL_MACHINE中的如下路径 HKEY_LOCAL_MACHINE\SOFTWARE\Micro ...

  4. sql 基础语句

    一.基础  2  31.说明:创建数据库  4Create DATABASE database-name  5  62.说明:删除数据库  7drop database dbname  8  93.说 ...

  5. gradient 渐变

    看了大漠 写的关于 Gradient 的文章,我也想写点以便加深记忆. 首先gradient 分为linear-gradient (线性渐变) 和 radial-gradient(径向渐变),渐变是作 ...

  6. 整理一下Promise 的用法

    Promise 的定义 Pormise是JS的异步编程的一种解决方案,在ES6将其写进了语言标准,提供了原生的Promise对象. Promise简单来理解就是一个容器,里面存放着某个未来才会结束的事 ...

  7. 串口工具kermit(ubuntu)

    安装 # sudo apt-get install ckermit 配置 kermit启动时,会首先查找~/.kermrc,然后再遍历/etc/kermit/kermrc # vi /etc/kerm ...

  8. openstack安装部署——计算服务(控制节点&计算节点)前言

    1.前言Openstack计算服务通过认证服务获取认证:通过镜像服务获取镜像:通过仪表盘提供的用户界面与用户交互.镜像的存取受工程和用户的限制,配额受工程的限制(例如不同工程允许虚拟机实例数量不同). ...

  9. Python处理异常

    异常操作: 1.错误的定义和特征 什么是错误:错误是由于逻辑和语法等导致一个程序无法正常执行的问题 错误的特征:有些错误无法预知 2.异常的定义 异常是程序错误时表示的一种状态 异常发生时,程序不会再 ...

  10. 雨后清风U盘启动盘的五大用处及制作方法

    如果有一个U盘可以帮助你安装系统,或者在你的电脑系统崩溃时帮助你修复系统,是不是很方便呢?雨后清风U盘启动盘就能帮你实现这样的效果.除此之外,雨后清风U盘启动盘还有另外一些用处.下面就来和大家分享一下 ...