Description

Dou Nai is an excellent ACM programmer, and he felt so tired recently that he wants to release himself from the hard work. He plans a travel to Xin Jiang .With the influence of literature, he wishes to visit Tian Chi, Da Ban Town, Lou Lan mysterious town , Yi Li , and other sights that also have great attraction to him. But the summer vocation time is not long. He must come back before the end of the summer vocation. For visiting more sights and all the necessary sights, he should make a thorough plan. Unfortunately, he is too tired to move, so you must help him to make this plan. Here are some prerequisites: there are two ways of transportation, bus and train, and velocity of the bus is 120km/h and the train is 80km/h. Suppose the travel is started from Urumuqi (point ), and the end of the travel route is Urumuqi too. You need to spend some time to visit the sights, but the time of each visit is not always equal. Suppose we spend  hours on traveling every day.
Input There are several test cases. For each case, the first line is three integers N, M and K. N (<=n<=) is the number of sights, M(<=M<=N) is total sights he must arrived (sight is always must be arrived) and K is total traveling time (per day). The second line is M integers which sights he must visited. The third line is N integers, the ith integer means the time he will stay in the sight i (per hour). Then several lines follow. Each line is four integers x, y, len and kind, <=x, y<=n, <len<=, means there is a bidirectional path between sights x and y, the distance is len, kind= means x and y are connected by train, kind= is by bus.
x=y=len=kind= means end of the path explanation.
N=M=K= means end of the input.
Output For each case, output maximum sights he will travel with all necessary sights visited or "No Solution" if he can't travel all the sights he like best in time.
Sample Input Sample Output No Solution

题目

  新疆地图……突然有点想家。

  题目大意:一个人在新疆旅游,有几个地方他必须去,剩下去的越多越好,有时间限制。他从乌市出发最后回到乌市,城市之间有火车或大巴,用的时间不一样。

  芒果君:这道题处理起来有点麻烦,但不难理解,算是状压DP的入门。先用floyd求最短路,然后进行记忆化搜索(DP和记搜搭配很强的,之前那道IOI的树型DP就是),枚举+松弛,多看几遍就能懂了233333333

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define inf 1<<29
using namespace std;
double mp[][],cost[],dp[<<][];
int n,m,k,ans,tar;
void init()
{
ans=tar=;
for(int i=;i<n;++i){
for(int j=;j<n;++j) mp[i][j]=inf;
mp[i][i]=;
}
for(int i=;i<(<<n);++i)
for(int j=;j<n;++j)
dp[i][j]=inf;
}
void floyd()
{
for(int k=;k<n;++k)
for(int i=;i<n;++i)
for(int j=;j<n;++j)
mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]);
}
int sta(int x)
{
int t=x,sum=;
while(t){
if(t&) sum++;
t>>=;
}
return sum;
}
double dfs(int x,int y)
{
if(dp[x][y]!=inf) return dp[x][y];
double t=inf;
for(int i=;i<n;++i) if(x&(<<i)&&i!=y) if(i||(x^(<<y))==) t=min(t,dfs(x^(<<y),i)+mp[i][y]+cost[y]);
if((tar&x)==tar&&(t+mp[y][])<=k) ans=max(ans,sta(x));
return dp[x][y]=t;
}
int main()
{
int x,y,op,t;
double len;
while(scanf("%d%d%d",&n,&m,&k)!=EOF){
if(!n&&!m&&!k) break;
init();
k*=;
for(int i=;i<m;++i){
scanf("%d",&t);
tar|=<<(t-);
}
for(int i=;i<n;++i) scanf("%lf",&cost[i]);
while(scanf("%d%d%lf%d",&x,&y,&len,&op)!=EOF){
if(!x&&!y&&!len&&!op) break;
x--,y--;
mp[x][y]=mp[y][x]=min(mp[x][y],len/(80.0+op*40.0));
}
floyd();
dp[][]=cost[];
for(int i=;i<n;++i)
dfs((<<n)-,i);
if(ans>) printf("%d\n",ans);
else puts("No Solution");
}
return ;
}

  

POJ 3229:The Best Travel Design的更多相关文章

  1. poj 3229 The Best Travel Design ( 图论+状态压缩 )

    The Best Travel Design Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1359   Accepted: ...

  2. POJ 3321:Apple Tree + HDU 3887:Counting Offspring(DFS序+树状数组)

    http://poj.org/problem?id=3321 http://acm.hdu.edu.cn/showproblem.php?pid=3887 POJ 3321: 题意:给出一棵根节点为1 ...

  3. LeetCode 622:设计循环队列 Design Circular Queue

    LeetCode 622:设计循环队列 Design Circular Queue 首先来看看队列这种数据结构: 队列:先入先出的数据结构 在 FIFO 数据结构中,将首先处理添加到队列中的第一个元素 ...

  4. POJ 3252:Round Numbers

    POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...

  5. POJ 2100:Graveyard Design(Two pointers)

    [题目链接] http://poj.org/problem?id=2100 [题目大意] 给出一个数,求将其拆分为几个连续的平方和的方案数 [题解] 对平方数列尺取即可. [代码] #include ...

  6. POJ 3580:SuperMemo(Splay)

    http://poj.org/problem?id=3580 题意:有6种操作,其中有两种之前没做过,就是Revolve操作和Min操作.Revolve一开始想着一个一个删一个一个插,觉得太暴力了,后 ...

  7. POJ 1459:Power Network(最大流)

    http://poj.org/problem?id=1459 题意:有np个发电站,nc个消费者,m条边,边有容量限制,发电站有产能上限,消费者有需求上限问最大流量. 思路:S和发电站相连,边权是产能 ...

  8. 最近点对问题 POJ 3714 Raid && HDOJ 1007 Quoit Design

    题意:有n个点,问其中某一对点的距离最小是多少 分析:分治法解决问题:先按照x坐标排序,求解(left, mid)和(mid+1, right)范围的最小值,然后类似区间合并,分离mid左右的点也求最 ...

  9. POJ 3436:ACM Computer Factory(最大流记录路径)

    http://poj.org/problem?id=3436 题意:题意很难懂.给出P N.接下来N行代表N个机器,每一行有2*P+1个数字 第一个数代表容量,第2~P+1个数代表输入,第P+2到2* ...

随机推荐

  1. SIGAI机器学习第五集 贝叶斯分类器

    讲授贝叶斯公式.朴素贝叶斯分类器.正态贝叶斯分类器的原理.实现以及实际应用 大纲: 贝叶斯公式(直接用贝叶斯公式完成分类,计算一个样本的特征向量X属于每个类c的概率,这个计算是通过贝叶斯公式来完成的. ...

  2. P3355 骑士共存问题【洛谷】(二分图最大独立集变形题) //链接矩阵存图

    展开 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可 ...

  3. 51nod 1020

    求 $n$ 个数的排列中逆序数为 $k$ 的排列数$f[n][k]$ 表示 $n$ 个数的排列中逆序数为 $k$ 的排列数$f[n][k] = \sum_{i = 0}^{n - 1} f[n - 1 ...

  4. 【poj2709】Painter--贪心

    Painter Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5621   Accepted: 3228 Descripti ...

  5. tar 命令出现 Cowardly refusing to create an empty archive 问题详解

    错误提示的字面意思是,系统惴惴不安地拒绝执行创建一个空压缩包的任务.检查tar命令的语法!!!参考:https://blog.csdn.net/deniro_li/article/details/54 ...

  6. 2015 ACM Arabella Collegiate Programming Contest

    题目链接:https://vjudge.net/contest/154238#overview. ABCDE都是水题. F题,一开始分类讨论,结果似乎写挫了,WA了一发.果断换并查集上,A了. G题, ...

  7. Chisel-LLDB命令插件,让调试更Easy

    http://blog.cnbluebox.com/blog/2015/03/05/chisel/ LLDB 是一个有着 REPL 的特性和 C++ ,Python 插件的开源调试器.LLDB 绑定在 ...

  8. Linux命令行提交更新冲突

    1.在harry目录下的hello文件第五行加一些内容 2.将修改后文件执行提交操作 提交成功,文件版本升为5 3.在sally目录下同样修改hello文件第五行 4.sally进行提交操作 发现提交 ...

  9. ORM SQLAlchemy - 建立一个关系 relationship

    relationship函数是sqlalchemy对关系之间提供的一种便利的调用方式, backref参数则对关系提供反向引用的声明 1 背景 如没有relationship,我们只能像下面这样调用关 ...

  10. flask 自定义转换器

    from flask import Flask from flask import url_for from flask import redirect from werkzeug.routing i ...