Acwing-204-表达整数的奇怪方式(扩展中国剩余定理)
链接:
https://www.acwing.com/problem/content/206/
题意:
给定2n个整数a1,a2,…,an和m1,m2,…,mn,求一个最小的非负整数x,满足∀i∈[1,n],x≡mi(mod ai)。
思路:
扩展中国剩余定理模板题.
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL R[50], M[50];
int n;
LL ExGcd(LL a, LL b, LL &x, LL &y)
{
if (b == 0)
{
x = 1, y = 0;
return a;
}
LL d = ExGcd(b, a%b, x, y);
LL tmp = y;
y = x-(a/b)*y;
x = tmp;
return d;
}
LL ExCRT()
{
LL m = M[1], r = R[1], x, y, gcd;
for (int i = 2;i <= n;i++)
{
gcd = ExGcd(m, M[i], x, y);
if ((r-R[i])%gcd != 0)
return -1;
x = (r-R[i])/gcd*x%M[i];
r -= m*x;
m = m/gcd*M[i];
r %= m;
}
return (r%m+m)%m;
}
int main()
{
scanf("%d", &n);
for (int i = 1;i <= n;i++)
scanf("%lld%lld", &M[i], &R[i]);
printf("%lld\n", ExCRT());
return 0;
}
Acwing-204-表达整数的奇怪方式(扩展中国剩余定理)的更多相关文章
- AcWing 204. 表达整数的奇怪方式 (线性同余方程组)打卡
给定2n个整数a1,a2,…,ana1,a2,…,an和m1,m2,…,mnm1,m2,…,mn,求一个最小的整数x,满足∀i∈[1,n],x≡mi(mod ai)∀i∈[1,n],x≡mi(mod ...
- AcWing 204. 表达整数的奇怪方式 / Strange Way To Express Integers
我作为一个初中蒟蒻,听y大视频听了5遍还不懂,快哭了.然后终于(好像)搞懂,写成题解加深一下记忆... 将式子等价转换 对于每两个式子(我们考虑将其合并): \(x \equiv a_1 \%\ m_ ...
- AcWing 204. 表达整数的奇怪方式
#include<bits/stdc++.h> using namespace std; typedef long long LL; LL exgcd(LL a,LL b,LL & ...
- (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...
- 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...
- 扩展中国剩余定理(EXCRT)学习笔记
扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...
- 扩展中国剩余定理 (exCRT) 的证明与练习
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...
随机推荐
- .NET 表达式计算:Expression Evaluator
Expression Evaluator 是一个轻量级的可以在运行时解析C#表达式的开源免费组件.表达式求值应该在很多地方使用,例如一些工资或者成本核算系统,就需要在后台动态配置计算表达式,从而进行计 ...
- 用CTime类得到当前日期 时间
(1)定义一个CTime类的对象CTime time: (2)得到当前时间time = CTime::GetCurrentTime(); (3)Get Year(),GetMonth(),GetDay ...
- STL set 常见用法详解
<算法笔记>学习笔记 set 常见用法详解 set是一个内部自动有序且不含重复元素的容器 1. set 的定义 //单独定义一个set set<typename> name: ...
- 简单Kibana命令
1 查看健康状态 GET _cat/health?v epoch timestamp cluster status node.total node.data shards 1531290005 14: ...
- day05-06
day05 上传下载 下载工具软件: lrzsz 安装方法: yum install lrzsz -y 下载命令就是sz 上传命令就是rz 下载到widow实列 sz 文件名 上传到linux 执行r ...
- spring 的工厂类
spring 的工厂类 1. 工厂类 BeanFactory 和 ApplicationContext 的区别. ApplicationContext 是 BeanFactory 的子接口,提供了比父 ...
- 怎样在 Vue 中使用 v-model 处理表单?
主要是通过 v-model 对表单元素做数据的 双向绑定. 用法其实也很简单, 只是因为表单元素有不同类型, 处理方式有些许不同, 这点需要注意. 1. 如果是 输入框 , 可以直接使用 v-mode ...
- luogu题解 P2860[USACO冗余路径Redundant Paths] 缩点+桥
题目链接 https://www.luogu.org/problemnew/show/P2860 https://www.lydsy.com/JudgeOnline/problem.php?id=17 ...
- SQL基础:语句执行顺序
SQL入门 select * from table; SQL实战题目 有下面一个表 t ,存储了每个商品类别的成交明细,我们需要通过下面这张表获取订单量大于10对应的类别,并从中取出订单量前3的商品类 ...
- Joomla 3.0.0 - 3.4.6 RCE漏洞分析记录
0x00 前言 今天早上看到了国内几家安全媒体发了Joomla RCE漏洞的预警,漏洞利用的EXP也在Github公开了.我大致看了一眼描述,觉得是个挺有意思的漏洞,因此有了这篇分析的文章,其实这个 ...