Light OJ - 1026 - Critical Links(图论-Tarjan算法求无向图的桥数) - 带详细注释
无向连通图中,如果删除某边后,图变成不连通,则称该边为桥。
也可以先用Tajan()进行dfs算出所有点 的low和dfn值,并记录dfs过程中每个 点的父节点;然后再把所有点遍历一遍, 看其low和dfn,满足dfn[ fa ]<low[ i ](0<i<=n, i 的 father为fa) —— 则桥为fa-i。 找桥的时候,要注意看有没有重边;有重边,则不是桥。
另外,本题的题意及测试样例中没有重边,所以不用考虑重边。
带详细注释的题解:
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<iostream>
#include<algorithm>
#include<stack>
#include<vector>
#define maxn 10010
using namespace std;
int dfn[maxn],low_link[maxn] ,Father[maxn];
//tarjan 算法的dfn ——在DFS过程中 的访问序号(也可以叫做开始时间
//tarjan 算法的low_link[i]——从i节点出发DFS过程中i下方节点所能到达的最早的节点的 开始时间
int bridgenum, Time ,n ; //桥的总数,dfn时间戳,n为顶点数,
vector<int>G[maxn]; //定义图的邻接矩阵表
stack<int>st;
struct node{
int u,v;
}bridge[maxn]; //整个图的桥的存储
bool cmp( node a,node b )
{
if(a.u!=b.u)return a.u<b.u;
else return a.v<b.v;
}
void init(){
int i;
for(i=;i<=n;i++) //初始化邻接表
G[i].clear();
bridgenum=;Time=;
memset(dfn,,sizeof(dfn));
memset(low_link,,sizeof(low_link));
memset(Father,,sizeof(Father));
}
void tarjan(int u,int fa)
{
low_link[u]=dfn[u]=++Time;
Father[u]=fa; //记录父节点
// st.push(u);
for(int i=;i<(int)G[u].size();i++){
int v=G[u][i];
if(!dfn[v]){
tarjan(v,u);
low_link[u]=min(low_link[u],low_link[v]);
}
else if(v!=fa){ //不能连接到父节点!
low_link[u]=min(low_link[u],dfn[v]);
}
else{
//这种情况就是有重边的情况!不予处理,直接跳过!
}
}
}
void solve()
{
for(int i=;i<n;i++){
if(!dfn[i])
tarjan(i,-);
}
int ans=;
for(int i=;i<n;i++){
int v=Father[i];
if(dfn[v]<low_link[i]&&v!=-){ //若v-i可以构成父节点
bridge[ans].u=v; //桥的两条边
bridge[ans].v=i;
if(bridge[ans].u>bridge[ans].v)
swap(bridge[ans].u,bridge[ans].v);
ans++;
}
}
sort(bridge,bridge+ans,cmp);
printf("%d critical links\n",ans);
for(int i=;i<ans;i++){
printf("%d - %d\n",bridge[i].u,bridge[i].v);
}
}
int cal_num(char ch[]){
int len=strlen(ch),s=;
for(int i=;i<=len-;i++){
s=s*+ch[i]-'';
}
return s;
}
int main()
{
int T,cas=;
scanf("%d",&T);
while(T--)
{
init();
char ch[];
int m ,u,v; //边数
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d%s",&u,ch);
m=cal_num(ch); //截取出数字存入m——边数
for(int j=;j<=m;j++){
scanf("%d",&v);
G[u].push_back(v); //这里按单向边任意一边存储就可以了,毕竟是无向图!
G[v].push_back(u);
}
}
printf("Case %d:\n",++cas);
solve();
}
return ;
}
Light OJ - 1026 - Critical Links(图论-Tarjan算法求无向图的桥数) - 带详细注释的更多相关文章
- tarjan算法求无向图的桥、边双连通分量并缩点
// tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> ...
- Light OJ 1026 - Critical Links (图论-双向图tarjan求割边,桥)
题目大意:双向联通图, 现在求减少任意一边使图的联通性改变,按照起点从小到大列出所有这样的边 解题思路:双向边模版题 tarjan算法 代码如下: #include<bits/stdc++.h& ...
- [Tarjan系列] Tarjan算法求无向图的桥和割点
RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...
- [Tarjan系列] Tarjan算法求无向图的双连通分量
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...
- tarjan算法--求无向图的割点和桥
一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 2.割点:无向连通图中 ...
- SPF Tarjan算法求无向图割点(关节点)入门题
SPF 题目抽象,给出一个连通图的一些边,求关节点.以及每个关节点分出的连通分量的个数 邻接矩阵只要16ms,而邻接表却要32ms, 花费了大量的时间在加边上. // time 16ms 1 ...
- tarjan算法与无向图的连通性(割点,桥,双连通分量,缩点)
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分 ...
- Tarjan算法求割点
(声明:以下图片来源于网络) Tarjan算法求出割点个数 首先来了解什么是连通图 在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点i到顶点j有路径相连(当然从j到i也一定有路径),则称 ...
- Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...
随机推荐
- perl删除文件前几列
perl oneline 快速删除文件的前两列代码如下 6 perl -lane 'print join("\t",@F[2..$#F])' test.txt 输出效果
- GraphHopper-初识
GraphHopper GraphHopper is a fast and Open Source road routing engine. Is fast and memory efficie ...
- pytorch1.0实现GAN
import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # 超参数设置 # Hype ...
- [转帖]“腾百万”之后,腾讯的云操作系统VStation单集群调度达10万台
“腾百万”之后,腾讯的云操作系统VStation单集群调度达10万台 https://www.leiphone.com/news/201909/4BsKCJtvvUCEb66c.html 腾讯有超过1 ...
- 多线程(10) — Future模式
Future模式是多线程开发中常用常见的一种设计模式,它的核心思想是异步调用.在调用一个函数方法时候,如果函数执行很慢,我们就要进行等待,但这时我们可能不着急要结果,因此我们可以让被调者立即返回,让它 ...
- (2)Spring Boot配置
文章目录 配置文件 YAML 语法 单元测试 配置文件值自动注入 @Value 获取配置文件属性的值 加载指定配置文件 优先级问题 加载Spring 的配置文件 为容器中添加组件 随机数 & ...
- PAT(B) 1088 三人行(Java)
题目链接:1088 三人行 (20 point(s)) 参考博客:PAT (Basic Level) Practice (中文)1088 三人行 (20 分)(Java实现)吃口雪花 题目描述 子曰: ...
- (转)FFMPEG类库打开流媒体的方法(需要传参数的时候)
本文链接:https://blog.csdn.net/leixiaohua1020/article/details/14215393 使用ffmpeg类库进行开发的时候,打开流媒体(或本地文件)的函数 ...
- SVN_03绿色版
1.首先备份当前安装visualSVN文件的bin目录,万一出错还能反个水.一般默认安装路径是C:\Program Files(x86)VisualSVN\bin 2.然后运行ildasm,Windo ...
- Java 面向对象_接口
接口定义 接口就是多个类的公共规范 接口是一种引用数据类型, 最重要的内容是其中的抽象方法 定义格式: public interface MyInterfaceAbstract { // 这是一个抽象 ...