ComputeSVD



      
在分布式矩阵有CoordinateMatirx,
RowMatrix, IndexedRowMatrix三种。除了CoordinateMatrix之外,IndexedRowMatrix和RowMatrix都有computeSVD方法,并且CoordinateMatrix有toIndexedRowMatrix()方法和toRowMatrix()方法可以向IndexedRowMatrix 和RowMatrix两种矩阵类型转换。

   因此主要对比 IndexedRowMatrix 和 RowMatrix 两种矩阵类型的 ComputSVD 算法进行分析
   关于SVD内容请参看维基百科,和一篇很棒的博文:《机器学习中的数学》进行了解。 一 算法描述:            def   computeSVD

( k: Int, computeU: Boolean = false, rCond: Double = 1e-9):         
                       

IndexedRowMatrix  返回类型: 
SingularValueDecomposition[IndexedRowMatrix, Matrix]
                       
RowMatrix 
              返回类型: 
SingularValueDecomposition[RowMatrix, Matrix] 
                 U                is a RowMatrix of size m x k that satisfies U' * U = eye(k),

                
S                  is a Vector of size k, holding the singular values in descending order,

                
V                  is a Matrix of size n x k that satisfies V' * V = eye(k).

              
k 
               number of leading singular values to keep (0 < k <= n). It might return less than k if there are
                                    numerically zero singular values or there are not enough Ritz values converged before the
                                    maximum number of Arnoldi update iterations is reached.

                
computeU   whether to compute U                  rCoud         the reciprocal condition number. All singular values smaller than rCond * sigma(0) are treated as zero,
                                    where sigma(0) is the largest singular value.
                 return         SingularValueDecomposition(U, s, V). U = null if computeU = false. 二 选择例子:

构建一个4×5的矩阵M:

      
矩阵的形式为svdM.txt :
                        1  0  0  0  2
                        0  0  3  0  0
                        0  0  0  0  0
                        0  4  0  0  0

M矩阵的奇异值分解后奇异矩阵s应为:

               4  0  0  0  0
                           0  3  0  0  0
                           0  0
√5 0  0
                           0  0  0  0  0

我们将通过ComputeSVD函数进行验证.

三 构造矩阵,运行算法并验证结果:   

<一> 构造RowMatrix矩阵:M
 
        scala> val M = new RowMatrix(sc.textFile("hdfs:///usr/matrix/svdM.txt").map(_.split(' '))
                                                 .map(_.map(_.toDouble)).map(_.toArray)
                                                 .map(line => Vectors.dense(line)))
        M: org.apache.spark.mllib.linalg.distributed.RowMatrix = org.apache.spark.mllib.linalg.distributed.RowMatrix

<二> 调用算法
         scala> val svd = M.computeSVD(4, true)
         svd: SingularValueDecomposition[RowMatrix,Matrix]
        
可以看到svd是一个SingularValueDecomposition类型的对像,内部包含一个RowMatrix和一个Matrix用算法,并且此处的RowMatrix就是左奇异向量U,Matrix就是右奇异向量V.

<三> 验证结果

SingularValueDecomposition类API如下:
        

矩阵M的左奇异向量U:
        scala> scala> val U = svd.U
                   U: org.apache.spark.mllib.linalg.distributed.RowMatrix = org.apache.spark.mllib.linalg.distributed.RowMatrix
         scala> U.rows.foreach(println)
                    [0.0 ,0.0 ,  -0.9999999999999999 ,  -1.4901161193847656E-8]
                    [0.0 ,1.0 ,0.0 ,0.0]
                    [0.0 ,0.0 ,0.0 ,0.0]
                   [-1.0 ,0.0 ,0.0 ,0.0]

矩阵M的奇异值s:
         scala> val s = svd.s
                   s:  org.apache.spark.mllib.linalg.Vector = [4.0,3.0,2.23606797749979,1.4092648163485167E-8]

矩阵M的右奇异向量V:
         scala> val V = svd.V
                    V: org.apache.spark.mllib.linalg.Matrix =
                    0.0    0.0    -0.44721359549995787     0.8944271909999159
                    -1.0   0.0    0.0    0.0
                    0.0    1.0    0.0    0.0
                    0.0    0.0    0.0    0.0
                    0.0    0.0   -0.8944271909999159       -0.447213595499958

转载:SVD的更多相关文章

  1. 转载:奇异值分解(SVD) --- 线性变换几何意义(下)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  2. 转载:奇异值分解(SVD) --- 线性变换几何意义(上)

    本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理 ...

  3. 奇异值分解(SVD)原理详解及推导(转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  4. 奇异值分解(SVD)原理详解及推导 (转载)

    转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有 ...

  5. SVD分解的理解[转载]

    http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...

  6. 【转载】奇异值分解(SVD)计算过程示例

    原文链接:奇异值分解(SVD)的计算方法 奇异值分解是线性代数中一种重要的矩阵分解方法,这篇文章通过一个具体的例子来说明如何对一个矩阵A进行奇异值分解. 首先,对于一个m*n的矩阵,如果存在正交矩阵U ...

  7. 奇异值分解(SVD) --- 几何意义 (转载)

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象, ...

  8. 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是 ...

  9. 数值分析之奇异值分解(SVD)篇

    在很多线性代数问题中,如果我们首先思考若做SVD,情况将会怎样,那么问题可能会得到更好的理解[1].                                       --Lloyd N. ...

随机推荐

  1. Spring-Cloud之Spring-Boot框架-1

    一.Spring Boot 是由 Pivotal 团队开发的 Spring 框架,采用了生产就绪的观点 ,旨在简化配置,致力于快速开发. Spring Boot 框架提供了自动装配和起步依赖,使开发人 ...

  2. 表单提交学习笔记(一)—利用jquery.form提交表单(后台.net MVC)

    起因:一开始想用MVC本身的Form提交方法,但是提交完之后想进行一些提示,MVC就稍显不足了,最后用jquery插件---jquery.form.js,完美解决了问题~~ 使用方法 一.下载jque ...

  3. selenium中的元素操作之下拉列表操作(四)

    下拉列表操作中分为两种:select.非select 1.非select的下拉框操作 非select下拉列表操作与网页元素操作一致,找到元素,定位元素,设置等待,点击元素等等 接下来操作百度的设置按钮 ...

  4. linq根据英文首字母姓名排序

    names.Sort((a, b) => a.name.CompareTo(b.name));

  5. JS去除字符串中的中括号

    var str = '这是一个字符串[html]语句;[html]字符串很常见'; alert(str.replace(/\[|]/g,''));//移除字符串中的所有[]括号(不包括其内容) //输 ...

  6. mysql的yearweek 和 weekofyear函数

    1.MySQL 的 YEARWEEK 是获取年份和周数的一个函数,函数形式为 YEARWEEK(date[,mode]) 例如 2010-3-14 ,礼拜天 SELECT YEARWEEK('2010 ...

  7. 有价证券secuerity英语

    证券业 证券业是为证券投资活动服务的专门行业.各国定义的证券业范围略有不同.按照美国的 “产业分类标准”,证券业由证券经纪公司.证券交易所和有关的商品经纪集团组成.证券业在世界各国都是一个小的产业部门 ...

  8. Docke 镜像加速

    一.国内获取Docker镜像时,访问 https://hub.docker.com/速度缓慢,只有几十K左右,这种情况可以使用国内的一些docker镜像,国内有些企业做了镜像拷贝工作,这样,我们就可以 ...

  9. Linux加密和数据安全性

    加密和安全 墨菲定律 墨菲定律:一种心理学效应,是由爱德华·墨菲(Edward A. Murphy)提出的, 原话:如果有两种或两种以上的方式去做某件事情,而其中一种选择方式将导 致灾难,则必定有人会 ...

  10. composer.json详解

    composer.json 架构:https://docs.phpcomposer.com/04-schema.html#homepage composer.json 完全解析:https://lea ...