前段时间有位小可爱问我,为什么她的QQ图特别飘,如果你不理解怎样算飘,请看下图:

理想的QQ图应该是这样的:

我当时的第一反应是:1)群体分层造成的;2)表型分布有问题。因此让她检查一下数据的群体分层情况,如果没有问题就看一下表型分布。

这段时间有空了,我觉得有必要梳理一下这个飘逸的QQ图,到底是怎么回事儿以及如何确定这么飘逸的QQ图有没有问题。

1.产生飘逸的QQ图的原因

产生飘逸的qq图的原因有很多,比如我们喜闻乐见的:基因多效性(polygenicity)。也有可能是混淆偏倚,比如群体分层,假如样本中混合了欧洲、非洲、亚洲等各个地方的群体,本身各个群体的SNP频率差异就很大,如果不加以群体分层控制,关联分析的时候就会产生很多偏离预期值的SNP位点。

很久以前,出现飘逸的QQ图的话,我们可以搭配膨胀系数(膨胀系数的计算)一起看,膨胀系数如果接近1(比如1.01,1.2这种不算接近1),那么也还算过得去。

但,膨胀系数接近1这种是比较理想的情况。实际情况是,很多人的QQ图不仅飘逸,膨胀系数还老高

这就尴尬了,连膨胀系数都无法确定这个QQ图飘的正不正常了。

所以呢,接下来还有什么方法确定我们的基因组数据有没有问题呢?

2.怎么确定是基因多效性还是混淆偏倚呢

接下来我要介绍一款神人工具LDSC (LD SCore),全称是LD Score regression

这款工具就是帮我们实现如何区分飘逸的QQ图正不正常

具体来说,就是通过LDSC工具计算基因组数据的LD回归截距,如果是基因多效性,那么截距会接近1(比如1.004),如果是群体分层等混淆因素引起的,那么LD回归截距就会远离1(比如1.30)。

除了看截距数值,我们还可以通过画LD Score的图来确定数据是否有问题。

2.1基因多效性

如果画出来的LDscore图是下面这种形式,说明GWAS结果是没有问题的,QQ图飘逸就让它飘逸吧。

2.2混淆偏倚

如果画出来的LDscore图是下面这种形式,说明QQ图是有问题的。

3.总结

总之,看截距。

截距很接近1,就不用管QQ图好不好看了。

远离1(1.3这种),说明基因组数据是有问题的,检查一下PCA加够了没有、群体分层有没有控制好、是否混了很多有亲缘关系的样本在里面。

如果你想了解怎么用LDSC计算截距,请见下回解析。

全基因组关联分析(GWAS):为何我的QQ图那么飘的更多相关文章

  1. GWAS | 全基因组关联分析 | Linkage disequilibrium (LD)连锁不平衡 | 曼哈顿图 Manhattan_plot | QQ_plot | haplotype phasing

    现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp ...

  2. 一行命令学会全基因组关联分析(GWAS)的meta分析

    为什么需要做meta分析 群体分层是GWAS研究中一个比较常见的假阳性来源. 也就是说,如果数据存在群体分层,却不加以控制,那么很容易得到一堆假阳性位点. 当群体出现分层时,常规手段就是将分层的群体独 ...

  3. GWAS 全基因组关联分析 | summary statistic 概括统计 | meta-analysis 综合分析

    有很多概念需要明确区分: 人有23对染色体,其中22对常染色体autosome,另外一对为性染色体sex chromosome,XX为女,XY为男. 染色体区带命名:在标示一特定的带时需要包括4项:① ...

  4. 全基因组关联分析(GWAS)的计算原理

    前言 关于全基因组关联分析(GWAS)原理的资料,网上有很多. 这也是我写了这么多GWAS的软件教程,却从来没有写过GWAS计算原理的原因. 恰巧之前微博上某位小可爱提问能否写一下GWAS的计算原理. ...

  5. 【GWAS文献解读】疟原虫青蒿素抗药性的全基因组关联分析

    英文名:Genetic architecture of artemisinin-resistant Plasmodium falciparum 中文名:疟原虫青蒿素抗药性的全基因组关联分析 期刊:Na ...

  6. 全基因组关联分析(Genome-Wide Association Study,GWAS)流程

    全基因组关联分析流程: 一.准备plink文件 1.准备PED文件 PED文件有六列,六列内容如下: Family ID Individual ID Paternal ID Maternal ID S ...

  7. 全基因组关联分析(GWAS)扫不出信号怎么办(文献解读)

    假如你的GWAS结果出现如下图的时候,怎么办呢?GWAS没有如预期般的扫出完美的显著信号,也就没法继续发挥后续研究的套路了. 最近,nature发表了一篇文献“Common genetic varia ...

  8. R语言画全基因组关联分析中的曼哈顿图(manhattan plot)

    1.在linux中安装好R 2.准备好画曼哈顿图的R脚本即manhattan.r,manhattan.r内容如下: #!/usr/bin/Rscript #example : Rscript plot ...

  9. 全基因组关联分析学习资料(GWAS tutorial)

    前言 很多人问我有没有关于全基因组关联分析(GWAS)原理的书籍或者文章推荐. 其实我个人觉得,做这个分析,先从跑流程开始,再去看原理. 为什么这么说呢,因为对于初学者来说,跑流程就像一个大黑洞,学习 ...

随机推荐

  1. JanusGraph 创建索引步骤(composite index)踩坑总结

    前言 JanusGraph是一个图数据库引擎,安装及入门可以参考 JanusGraph 图数据库安装小记.为了提高查询速度,在使用过程中一般要为某些属性创建索引.这篇随笔主要是记录创建索引过程中踩过的 ...

  2. vue中url带有#号键,去除方法

    在写vue项目中,发现路由跳转总是带有#,在获取数据中带来不必要的麻烦,如果我们不希望 路由中出现 # ,那怎么办呢? 解决办法: 在router ---->index 中 添加代码   mod ...

  3. Vector(同步)和Arraylist(异步)的异同

    //  同步  异步  //1  同步  //2  异步  //未响应 = 假死  占用内存过多  内存无法进行处理  //请求方式:同步    异步  //网页的展现过程中:1 css文件的下载  ...

  4. Linux rpm安装指定安装路径

    可以使用prefix参数. rpm -i –prefix=/home/gpadmin    greenplum-db-6.0.0-rhel6-x86_64.rpm 将greenplum-db-6.0. ...

  5. .net大文件分块上传断点续传demo

    IE的自带下载功能中没有断点续传功能,要实现断点续传功能,需要用到HTTP协议中鲜为人知的几个响应头和请求头. 一. 两个必要响应头Accept-Ranges.ETag 客户端每次提交下载请求时,服务 ...

  6. C语言中一个字符对应一个ascii码;占一个1个字节8个二进制位;存到内存中也是用ascii的十进制的二进制表示

    /** 只读变量和常量 const 只读 const int a; int const a;//同上面的代码行是等价的,都表示一个常整形数. int *const a;//const具有"左 ...

  7. $\text{fhq-treap}$总结

    \(\text{fhq-treap}\)总结 又名范浩强\(\text{treap}\),是一种无旋\(\text{treap}\).其原理同\(\text{treap}\)一样都是通过维护一个随机堆 ...

  8. python中isinstance函数

    1.描述 python中isinstance()函数,是python中的一个内置函数,用来判断一个函数是否是一个已知的类型,类似type(). 2.语法 isinstance(object,class ...

  9. NTT小结及原根求法

    注意 由于蒟蒻实在太弱了~^_^~暂时无法完成证明,仅能写出简单版总结 与FFT的区别 \(NTT\)与\(FFT\)的代码区别就是把单位根换成了原根,从而实现无精度误差与浮点数的巨大常数 原根具有单 ...

  10. HDU 6194 string string string ——(2017沈阳网络赛,后缀数组)

    思路见:http://blog.csdn.net/aozil_yang/article/details/77929216. 代码如下: #include <stdio.h> #includ ...