pandas-17 关于nan的处理
pandas-17 关于nan的处理
在pandas中有个另类的存在就是nan,解释是:not a number,不是一个数字,但是它的类型确是一个float类型。numpy中也存在关于nan的方法,如:np.nan
对于pandas中nan的处理,简单的说有以下几个方法。
查看是否是nan, s1.isnull() 和 s1.notnull()
丢弃有nan的索引项,s1.dropna()
将nan填充为其他值,df2.fillna()
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
n = np.nan
print(type(n)) # <class 'float'>
m = 1
print(n+m) # nan 任何数字和nan进行计算,都是nan
# nan in series
s1 = Series([1, 2, np.nan, 3, 4], index=['A', 'B', 'C', 'D', 'E'])
print(s1)
'''
A 1.0
B 2.0
C NaN
D 3.0
E 4.0
dtype: float64
'''
print(s1.isnull()) # 返回 bool值,是 nan 的话,返回true
'''
A False
B False
C True
D False
E False
dtype: bool
'''
print(s1.notnull()) # 非 nan , 返回true
'''
A True
B True
C False
D True
E True
dtype: bool
'''
# 去掉 有 nan 的索引项
print(s1.dropna())
'''
A 1.0
B 2.0
D 3.0
E 4.0
dtype: float64
'''
# nan in dataframe
df = DataFrame([[1, 2, 3], [np.nan, 5, 6], [7, np.nan, 9], [np.nan, np.nan, np.nan]])
print(df)
'''
0 1 2
0 1.0 2.0 3.0
1 NaN 5.0 6.0
2 7.0 NaN 9.0
3 NaN NaN NaN
'''
print(df.isnull()) # df.notnull() 同理
'''
0 1 2
0 False False False
1 True False False
2 False True False
3 True True True
'''
# 去掉 所有 有 nan 的 行, axis = 0 表示 行方向
df1 = df.dropna(axis=0)
print(df1)
'''
0 1 2
0 1.0 2.0 3.0
'''
# 表示在 列 的方向上。
df1 = df.dropna(axis=1)
print(df1)
'''
mpty DataFrame
Columns: []
Index: [0, 1, 2, 3]
'''
# any 只要有 nan 就会删掉。 all 是必须全是nan才删除
df1 = df.dropna(axis=0, how='any')
print(df1)
'''
0 1 2
0 1.0 2.0 3.0
'''
# any 只要有 nan 就会删掉。 all 全部是nan,才会删除
df1 = df.dropna(axis=0, how='all')
print(df1)
'''
0 1 2
0 1.0 2.0 3.0
1 NaN 5.0 6.0
2 7.0 NaN 9.0
'''
df2 = DataFrame([[1, 2, 3, np.nan], [2, np.nan, 5, 6], [np.nan, 7, np.nan, 9], [1, np.nan, np.nan, np.nan]])
print(df2)
'''
0 1 2 3
0 1.0 2.0 3.0 NaN
1 2.0 NaN 5.0 6.0
2 NaN 7.0 NaN 9.0
3 1.0 NaN NaN NaN
'''
print(df2.dropna(thresh=None))
'''
Empty DataFrame
Columns: [0, 1, 2, 3]
Index: []
'''
print(df2.dropna(thresh=2)) # thresh 表示一个范围,如:每一行的nan > 2,就删除
'''
0 1 2 3
0 1.0 2.0 3.0 NaN
1 2.0 NaN 5.0 6.0
2 NaN 7.0 NaN 9.0
'''
# 将nan进行填充
print(df2.fillna(value=1))
'''
0 1 2 3
0 1.0 2.0 3.0 1.0
1 2.0 1.0 5.0 6.0
2 1.0 7.0 1.0 9.0
3 1.0 1.0 1.0 1.0
'''
# 可以 为指定列 填充不同的 数值
print(df2.fillna(value={0: 0, 1: 1, 2: 2, 3: 3})) # 指定每一列 填充的数值
'''
0 1 2 3
0 1.0 2.0 3.0 3.0
1 2.0 1.0 5.0 6.0
2 0.0 7.0 2.0 9.0
3 1.0 1.0 2.0 3.0
'''
# 以下两个例子需要说明的是:对dataframe进行dropna,原来的dataframe不会改变
print(df1.dropna())
'''
0 1 2
0 1.0 2.0 3.0
'''
print(df1)
'''
0 1 2
0 1.0 2.0 3.0
1 NaN 5.0 6.0
2 7.0 NaN 9.0
'''
pandas-17 关于nan的处理的更多相关文章
- pandas数组(pandas Series)-(4)NaN的处理
上一篇pandas数组(pandas Series)-(3)向量化运算里说到,将两个 pandas Series 进行向量化运算的时候,如果某个 key 索引只在其中一个 Series 里出现,计算的 ...
- Pandas | 17 缺失数据处理
数据丢失(缺失)在现实生活中总是一个问题. 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题. 在这些领域,缺失值处理是使模型更加准确和有效的重点. 使用重构 ...
- pandas 里面对nan的判断
不要用math.isnan() pandas里专门有一个函数: age_null = pd.isnull(titanic_survival[‘age’])
- Pandas简易入门(二)
目录: 处理缺失数据 制作透视图 删除含空数据的行和列 多行索引 使用apply函数 本节主要介绍如何处理缺失的数据,可以参考原文:https://www. ...
- 02. Pandas 1|数据结构Series、Dataframe
1."一维数组"Series Pandas数据结构Series:基本概念及创建 s.index . s.values # Series 数据结构 # Series 是带有标签的一 ...
- Python pandas快速入门
Python pandas快速入门2017年03月14日 17:17:52 青盏 阅读数:14292 标签: python numpy 数据分析 更多 个人分类: machine learning 来 ...
- Python笔记 #15# Pandas: Missing Data
10 Minutes to pandas import pandas as pd import numpy as np import matplotlib.pyplot as plt dates = ...
- 十分钟掌握pandas(pandas官方文档翻译)
十分钟掌握pandas 文档版本:0.20.3 这是一个对pandas简短的介绍,适合新用户.你可以在Cookbook中查看更详细的内容. 通常,我们要像下面一样导入一些包. In [1]: impo ...
- pandas强化练习
这篇文章写得更好:http://wittyfans.com/coding/%E5%88%A9%E7%94%A8Pandas%E5%88%86%E6%9E%90%E7%BE%8E%E5%9B%BD%E4 ...
- 利用python进行数据分析之pandas入门
转自https://zhuanlan.zhihu.com/p/26100976 目录: 5.1 pandas 的数据结构介绍5.1.1 Series5.1.2 DataFrame5.1.3索引对象5. ...
随机推荐
- 常见bug类别
- 2019徐州网络赛H :function (min25筛)
题意:f(i)=i的幂次之和. 求(N+1-i)*f(i)之和. 思路:可以推论得对于一个素数p^k,其贡献是ans=(N+1)[N/(P^k)]+P^k(1+2+3...N/(P^k)); 我们分两 ...
- url路由
注意: url(r'^index/', views.index) 第一个index是提交跳转的网址 (可修改) 第二个是自定义的方法 url(r'^index666/', views.ind ...
- Pandas | 11 字符串函数
在本章中,我们将使用基本系列/索引来讨论字符串操作.在随后的章节中,将学习如何将这些字符串函数应用于数据帧(DataFrame). Pandas提供了一组字符串函数,可以方便地对字符串数据进行操作. ...
- python3中“->”的含义
->:标记返回函数注释,信息作为.__annotations__属性提供 __annotations__属性是字典.键return是用于在箭头后检索值的键.但是在Python中3.5,PEP 4 ...
- Linux 中【./】和【/】和【.】之间有什么区别?
/是指根目录,就和Windows的我的电脑那个位置差不多../是指用户所在的当前目录.如下所示:[root~]# cd /etc[root etc]# pwd/etc[rootetc]# cd /[r ...
- 热点Key问题的发现与解决
热点问题概述 产生原因 热点问题产生的原因大致有以下两种: 用户消费的数据远大于生产的数据(热卖商品.热点新闻.热点评论.明星直播). 在日常工作生活中一些突发的的事件,例如:双十一期间某些热门商品的 ...
- Scala反射(二)
我们知道,scala编译器会将scala代码编译成JVM字节码,编译过程中会擦除scala特有的一些类型信息,在scala-2.10以前,只能在scala中利用java的反射机制,但是通过java反射 ...
- 如何实现有返回值的多线程 JAVA多线程实现的三种方式
可返回值的任务必须实现Callable接口,类似的,无返回值的任务必须Runnable接口.执行Callable任务后,可以获取一个Future的对象,在该对象上调用get就可以获取到Callable ...
- 规范化使用MySQL
如何更规范化使用MySQL 如何更规范化使用MySQL 背景:一个平台或系统随着时间的推移和用户量的增多,数据库操作往往会变慢:而在Java应用开发中数据库更是尤为重要,绝大多数情况下数据库的性能决定 ...