NVIDIA-docker Cheatsheet
TensorFlow Docker requirements
- Install Docker on your local host machine.
- For GPU support on Linux, install nvidia-docker.
Note: To run the docker command without sudo, create the docker group and add your user. For details, see the post-installation steps for Linux.
Download a TensorFlow Docker image
The official TensorFlow Docker images are located in the tensorflow/tensorflow Docker Hub repository. Image releases are tagged using the following format:
| Tag | Description |
|---|---|
latest |
The latest release of TensorFlow CPU binary image. Default. |
nightly |
Nightly builds of the TensorFlow image. (unstable) |
version |
Specify the version of the TensorFlow binary image, for example: 1.14.0 |
devel |
Nightly builds of a TensorFlow master development environment. Includes TensorFlow source code. |
Each base tag has variants that add or change functionality:
| Tag Variants | Description |
|---|---|
tag-gpu |
The specified tag release with GPU support. (See below) |
tag-py3 |
The specified tag release with Python 3 support. |
tag-jupyter |
The specified tag release with Jupyter (includes TensorFlow tutorial notebooks) |
You can use multiple variants at once. For example, the following downloads TensorFlow release images to your machine:
docker pull tensorflow/tensorflow # latest stable releasedocker pull tensorflow/tensorflow:devel-gpu # nightly dev release w/ GPU supportdocker pull tensorflow/tensorflow:latest-gpu-jupyter # latest release w/ GPU support and Jupyter
Start a TensorFlow Docker container
To start a TensorFlow-configured container, use the following command form:
docker run [-it] [--rm] [-p hostPort:containerPort] tensorflow/tensorflow[:tag] [command]
For details, see the docker run reference.
Examples using CPU-only images
Let's verify the TensorFlow installation using the latest tagged image. Docker downloads a new TensorFlow image the first time it is run:
docker run -it --rm tensorflow/tensorflow \
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
Success: TensorFlow is now installed. Read the tutorials to get started.
Let's demonstrate some more TensorFlow Docker recipes. Start a bash shell session within a TensorFlow-configured container:
docker run -it tensorflow/tensorflow bash
Within the container, you can start a python session and import TensorFlow.
To run a TensorFlow program developed on the host machine within a container, mount the host directory and change the container's working directory (-v hostDir:containerDir -w workDir):
docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow python ./script.py
Permission issues can arise when files created within a container are exposed to the host. It's usually best to edit files on the host system.
Start a Jupyter Notebook server using TensorFlow's nightly build with Python 3 support:
docker run -it -p 8888:8888 tensorflow/tensorflow:nightly-py3-jupyter
Follow the instructions and open the URL in your host web browser: http://127.0.0.1:8888/?token=...
GPU support
Docker is the easiest way to run TensorFlow on a GPU since the host machine only requires the NVIDIA® driver (the NVIDIA® CUDA® Toolkit is not required).
Install nvidia-docker to launch a Docker container with NVIDIA® GPU support. nvidia-docker is only available for Linux, see their platform support FAQ for details.
Check if a GPU is available:
lspci | grep -i nvidia
Verify your nvidia-docker installation:
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
Note: nvidia-docker v1 uses the nvidia-docker alias, where v2 uses docker --runtime=nvidia.
Examples using GPU-enabled images
Download and run a GPU-enabled TensorFlow image (may take a few minutes):
docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
It can take a while to set up the GPU-enabled image. If repeatably running GPU-based scripts, you can use docker execto reuse a container.
Use the latest TensorFlow GPU image to start a bash shell session in the container:
docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu bash
NVIDIA-docker Cheatsheet的更多相关文章
- CentOS7 Nvidia Docker环境
最近在搞tensorflow的一些东西,话说这东西是真的皮,搞不懂.但是环境还是磕磕碰碰的搭起来了 其实本来是没想到用docker的,但是就一台配置较好电的服务器,还要运行公司的其他环境,vmware ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...
- centos7 安装 NVIDIA Docker
安装环境: 1.centos7.3 2.NVIDIA Corporation GP106 [GeForce GTX 1060 6GB] 安装nvidia-docker a.安装docker 可参考ce ...
- Docker Cheatsheet
一.创建 docker create:创建容器,处于停止状态. centos:latest:centos容器:最新版本(也可以指定具体的版本号).本地有就使用本地镜像,没有则从远程镜像库拉取.创建成功 ...
- docker 系列 - Docker CheatSheet | Docker 配置与实践清单 (转载)
本文转载自 (https://segmentfault.com/a/1190000016447161), 感谢作者.
- Ubuntu16.04下nvidia驱动+nvidia-docker+cuda9+cudnn7安装
一.宿主机安装nvidia驱动 打开终端,先删除旧的驱动: sudo apt-get purge nvidia* 禁用自带的 nouveau nvidia驱动 sudo gedit /etc/modp ...
- 基于Docker容器使用NVIDIA-GPU训练神经网络
一,nvidia K80驱动安装 1, 查看服务器上的Nvidia(英伟达)显卡信息,命令lspci |grep NVIDIA 05:00.0 3D controller: NVIDIA Corpo ...
- kubectl kubernetes cheatsheet
from : https://cheatsheet.dennyzhang.com/cheatsheet-kubernetes-a4 PDF Link: cheatsheet-kubernetes-A4 ...
随机推荐
- Compute Shader基础
ComputeShader: GPGPU:General Purpose GPU Programming,GPU通用计算,利用GPU的并行特性.大量并行无序数据的少分支逻辑适合GPGPU.平台 ...
- Candies POJ - 3159
题目链接:https://vjudge.net/problem/POJ-3159 思路: 能看出是差分约束的题, 我们想假设一个人是 p(1),另一个人是p(2),他们之间糖果差为w, 那么需要满足的 ...
- selenium+python关于页面滚动条滑动到底的问题总结
1.如果滚动条是针对整个HTML可以用如下方式: js = "var q=document.documentElement.scrollTop=10000" # documentE ...
- 常用dos命令(1)
[ 文件夹管理 ] cd 显示当前目录名或改变当前目录. md 创建目录. rd 删除一个目录. dir 显示目录中的文件和子目录列表. tree 以图形显示驱动器或路径的文件夹结构. path 为可 ...
- nuxtjs如何通过路由meta信息控制路由查看权限
我们知道NUXTJS可以通过路由中间件进行路由鉴权,中间件允许您定义一个自定义函数运行在一个页面或一组页面渲染之前. 但是我在实际使用过程中发现,中间件只有在路由跳转到路由中时才会进入,而在强制刷新网 ...
- UA记录
安卓QQ内置浏览器UA: Mozilla/5.0 (Linux; Android 5.0; SM-N9100 Build/LRX21V) AppleWebKit/537.36 (KHTML, like ...
- PR代码提交规范
1.在提交pull request之前,先要把 master上面的合并到 这个分支上面,看看是不是有冲突,然后在提交pr
- js密码加密
1.base64加密:在页面中引入base64.js文件,调用方法为: <!DOCTYPE HTML> <html> <head> <meta charset ...
- 模拟 + 暴搜 --- Help Me with the Game
Help Me with the Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3175 Accepted: ...
- 所谓的SaaS服务到底是什么?
先从SaaS说起,SaaS是英文Soft as a Service(软件即服务)的简写.SaaS并不是指代一个行业或者一种技术,它是一种2B的专业型软件租赁使用模式. 什么是专业型软件? 就是为了解决 ...