NVIDIA-docker Cheatsheet
TensorFlow Docker requirements
- Install Docker on your local host machine.
- For GPU support on Linux, install nvidia-docker.
Note: To run the docker
command without sudo
, create the docker
group and add your user. For details, see the post-installation steps for Linux.
Download a TensorFlow Docker image
The official TensorFlow Docker images are located in the tensorflow/tensorflow Docker Hub repository. Image releases are tagged using the following format:
Tag | Description |
---|---|
latest |
The latest release of TensorFlow CPU binary image. Default. |
nightly |
Nightly builds of the TensorFlow image. (unstable) |
version |
Specify the version of the TensorFlow binary image, for example: 1.14.0 |
devel |
Nightly builds of a TensorFlow master development environment. Includes TensorFlow source code. |
Each base tag has variants that add or change functionality:
Tag Variants | Description |
---|---|
tag -gpu |
The specified tag release with GPU support. (See below) |
tag -py3 |
The specified tag release with Python 3 support. |
tag -jupyter |
The specified tag release with Jupyter (includes TensorFlow tutorial notebooks) |
You can use multiple variants at once. For example, the following downloads TensorFlow release images to your machine:
docker pull tensorflow/tensorflow # latest stable release
docker pull tensorflow/tensorflow:devel-gpu # nightly dev release w/ GPU support
docker pull tensorflow/tensorflow:latest-gpu-jupyter # latest release w/ GPU support and Jupyter
Start a TensorFlow Docker container
To start a TensorFlow-configured container, use the following command form:
docker run [-it] [--rm] [-p hostPort:containerPort] tensorflow/tensorflow[:tag] [command]
For details, see the docker run reference.
Examples using CPU-only images
Let's verify the TensorFlow installation using the latest
tagged image. Docker downloads a new TensorFlow image the first time it is run:
docker run -it --rm tensorflow/tensorflow \
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
Success: TensorFlow is now installed. Read the tutorials to get started.
Let's demonstrate some more TensorFlow Docker recipes. Start a bash
shell session within a TensorFlow-configured container:
docker run -it tensorflow/tensorflow bash
Within the container, you can start a python
session and import TensorFlow.
To run a TensorFlow program developed on the host machine within a container, mount the host directory and change the container's working directory (-v hostDir:containerDir -w workDir
):
docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow python ./script.py
Permission issues can arise when files created within a container are exposed to the host. It's usually best to edit files on the host system.
Start a Jupyter Notebook server using TensorFlow's nightly build with Python 3 support:
docker run -it -p 8888:8888 tensorflow/tensorflow:nightly-py3-jupyter
Follow the instructions and open the URL in your host web browser: http://127.0.0.1:8888/?token=...
GPU support
Docker is the easiest way to run TensorFlow on a GPU since the host machine only requires the NVIDIA® driver (the NVIDIA® CUDA® Toolkit is not required).
Install nvidia-docker to launch a Docker container with NVIDIA® GPU support. nvidia-docker
is only available for Linux, see their platform support FAQ for details.
Check if a GPU is available:
lspci | grep -i nvidia
Verify your nvidia-docker
installation:
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
Note: nvidia-docker
v1 uses the nvidia-docker
alias, where v2 uses docker --runtime=nvidia
.
Examples using GPU-enabled images
Download and run a GPU-enabled TensorFlow image (may take a few minutes):
docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
It can take a while to set up the GPU-enabled image. If repeatably running GPU-based scripts, you can use docker exec
to reuse a container.
Use the latest TensorFlow GPU image to start a bash
shell session in the container:
docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu bash
NVIDIA-docker Cheatsheet的更多相关文章
- CentOS7 Nvidia Docker环境
最近在搞tensorflow的一些东西,话说这东西是真的皮,搞不懂.但是环境还是磕磕碰碰的搭起来了 其实本来是没想到用docker的,但是就一台配置较好电的服务器,还要运行公司的其他环境,vmware ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...
- centos7 安装 NVIDIA Docker
安装环境: 1.centos7.3 2.NVIDIA Corporation GP106 [GeForce GTX 1060 6GB] 安装nvidia-docker a.安装docker 可参考ce ...
- Docker Cheatsheet
一.创建 docker create:创建容器,处于停止状态. centos:latest:centos容器:最新版本(也可以指定具体的版本号).本地有就使用本地镜像,没有则从远程镜像库拉取.创建成功 ...
- docker 系列 - Docker CheatSheet | Docker 配置与实践清单 (转载)
本文转载自 (https://segmentfault.com/a/1190000016447161), 感谢作者.
- Ubuntu16.04下nvidia驱动+nvidia-docker+cuda9+cudnn7安装
一.宿主机安装nvidia驱动 打开终端,先删除旧的驱动: sudo apt-get purge nvidia* 禁用自带的 nouveau nvidia驱动 sudo gedit /etc/modp ...
- 基于Docker容器使用NVIDIA-GPU训练神经网络
一,nvidia K80驱动安装 1, 查看服务器上的Nvidia(英伟达)显卡信息,命令lspci |grep NVIDIA 05:00.0 3D controller: NVIDIA Corpo ...
- kubectl kubernetes cheatsheet
from : https://cheatsheet.dennyzhang.com/cheatsheet-kubernetes-a4 PDF Link: cheatsheet-kubernetes-A4 ...
随机推荐
- cocoapods升级
1.更新gem:sudo gem update --system 先要查看下源,如果源被墙了就换地址:https://gems.ruby-china.com 1.1.删除gem源:gem source ...
- pandas 生成并排放置的条形图和箱线图
1.代码 import numpy as np import pandas as pd import matplotlib.pyplot as plt # 生成数据,创建 DataFrame np.r ...
- 【JavaScript】图片加载由模糊变清晰 —— 图片优化
开发过程中,一些图片的展示时,加载很慢很久,后来把图片缩放压成缩略图吧,速度是快了但是模糊不清,如何处理这样问题,下面就和大家分享一下自己的处理方法. 先让客户端加载像素小的缩略图: <img ...
- 《always run团队》第六次作业:团队项目系统设计改进与详细设计
项目 内容 这个作业属于哪个课程 老师链接 这个作业的要求在哪里 作业链接地址 团队名称 always run 作业学习目标 掌握面向对象软件设计方法:(2)完善系统设计说明书,掌握面向对象详细设计内 ...
- btcWallet系列之一-grpc模块
btcwallet对外服务 btcwallet除了像btcd对外提供rpc服务以外,还提供了grpc服务,同时grpc采用的是protobuf来实现. 这方便与不同语言进行交互,降低客户端代码编写量. ...
- IComparable和IComparer接口
C#中,自定义类型,支持比较和排序,需要实现IComparable接口.IComparable接口存在一个名为CompareTo()的方法,接收类型为object的参数表示被比较对象,返回整型值:1表 ...
- 2019 Nowcoder Multi-University Training Contest 4 E Explorer
线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...
- Flask内的特殊装饰器
@app.template_global() # 全局变量 @app.template_filter() # 偏函数 @app.before_request # 请求进入视图函数之前,比 ...
- Educational Round 64 题解
前言: 这场太难了……我一个紫名只打出两题……(虽说感觉的确发挥不够好) 一群蓝绿名的dalao好像只打了两题都能升分的样子…… 庆幸的是最后A出锅然后unr了>///< 写一波题解纪念这 ...
- Spring Security教程之Jsp标签(八)
目录 1.1 authorize 1.2 authentication 1.3 accesscontrollist Spring Security也有对Jsp标签的支持的标签库 ...