TensorFlow Docker requirements

  1. Install Docker on your local host machine.
  2. For GPU support on Linux, install nvidia-docker.

Note: To run the docker command without sudo, create the docker group and add your user. For details, see the post-installation steps for Linux.

Download a TensorFlow Docker image

The official TensorFlow Docker images are located in the tensorflow/tensorflow Docker Hub repository. Image releases are tagged using the following format:

Tag Description
latest The latest release of TensorFlow CPU binary image. Default.
nightly Nightly builds of the TensorFlow image. (unstable)
version Specify the version of the TensorFlow binary image, for example: 1.14.0
devel Nightly builds of a TensorFlow master development environment. Includes TensorFlow source code.

Each base tag has variants that add or change functionality:

Tag Variants Description
tag-gpu The specified tag release with GPU support. (See below)
tag-py3 The specified tag release with Python 3 support.
tag-jupyter The specified tag release with Jupyter (includes TensorFlow tutorial notebooks)

You can use multiple variants at once. For example, the following downloads TensorFlow release images to your machine:

docker pull tensorflow/tensorflow                     # latest stable release
docker pull tensorflow/tensorflow:devel-gpu           # nightly dev release w/ GPU support
docker pull tensorflow/tensorflow:latest-gpu-jupyter  # latest release w/ GPU support and Jupyter
 

Start a TensorFlow Docker container

To start a TensorFlow-configured container, use the following command form:

docker run [-it] [--rm] [-p hostPort:containerPort] tensorflow/tensorflow[:tag] [command]
 

For details, see the docker run reference.

Examples using CPU-only images

Let's verify the TensorFlow installation using the latest tagged image. Docker downloads a new TensorFlow image the first time it is run:

docker run -it --rm tensorflow/tensorflow \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
 

Success: TensorFlow is now installed. Read the tutorials to get started.

Let's demonstrate some more TensorFlow Docker recipes. Start a bash shell session within a TensorFlow-configured container:

docker run -it tensorflow/tensorflow bash
 

Within the container, you can start a python session and import TensorFlow.

To run a TensorFlow program developed on the host machine within a container, mount the host directory and change the container's working directory (-v hostDir:containerDir -w workDir):

docker run -it --rm -v $PWD:/tmp -w /tmp tensorflow/tensorflow python ./script.py
 

Permission issues can arise when files created within a container are exposed to the host. It's usually best to edit files on the host system.

Start a Jupyter Notebook server using TensorFlow's nightly build with Python 3 support:

docker run -it -p 8888:8888 tensorflow/tensorflow:nightly-py3-jupyter
 

Follow the instructions and open the URL in your host web browser: http://127.0.0.1:8888/?token=...

GPU support

Docker is the easiest way to run TensorFlow on a GPU since the host machine only requires the NVIDIA® driver (the NVIDIA® CUDA® Toolkit is not required).

Install nvidia-docker to launch a Docker container with NVIDIA® GPU support. nvidia-docker is only available for Linux, see their platform support FAQ for details.

Check if a GPU is available:

lspci | grep -i nvidia
 

Verify your nvidia-docker installation:

docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
 

Note: nvidia-docker v1 uses the nvidia-docker alias, where v2 uses docker --runtime=nvidia.

Examples using GPU-enabled images

Download and run a GPU-enabled TensorFlow image (may take a few minutes):

docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
 

It can take a while to set up the GPU-enabled image. If repeatably running GPU-based scripts, you can use docker execto reuse a container.

Use the latest TensorFlow GPU image to start a bash shell session in the container:

docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu bash
 

NVIDIA-docker Cheatsheet的更多相关文章

  1. CentOS7 Nvidia Docker环境

    最近在搞tensorflow的一些东西,话说这东西是真的皮,搞不懂.但是环境还是磕磕碰碰的搭起来了 其实本来是没想到用docker的,但是就一台配置较好电的服务器,还要运行公司的其他环境,vmware ...

  2. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...

  3. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...

  4. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...

  5. centos7 安装 NVIDIA Docker

    安装环境: 1.centos7.3 2.NVIDIA Corporation GP106 [GeForce GTX 1060 6GB] 安装nvidia-docker a.安装docker 可参考ce ...

  6. Docker Cheatsheet

    一.创建 docker create:创建容器,处于停止状态. centos:latest:centos容器:最新版本(也可以指定具体的版本号).本地有就使用本地镜像,没有则从远程镜像库拉取.创建成功 ...

  7. docker 系列 - Docker CheatSheet | Docker 配置与实践清单 (转载)

    本文转载自 (https://segmentfault.com/a/1190000016447161), 感谢作者.

  8. Ubuntu16.04下nvidia驱动+nvidia-docker+cuda9+cudnn7安装

    一.宿主机安装nvidia驱动 打开终端,先删除旧的驱动: sudo apt-get purge nvidia* 禁用自带的 nouveau nvidia驱动 sudo gedit /etc/modp ...

  9. 基于Docker容器使用NVIDIA-GPU训练神经网络

    一,nvidia K80驱动安装 1,  查看服务器上的Nvidia(英伟达)显卡信息,命令lspci |grep NVIDIA 05:00.0 3D controller: NVIDIA Corpo ...

  10. kubectl kubernetes cheatsheet

    from : https://cheatsheet.dennyzhang.com/cheatsheet-kubernetes-a4 PDF Link: cheatsheet-kubernetes-A4 ...

随机推荐

  1. nginx.conf 下日志host.access.log 说明

    位置usr/local/nginx/conf/nginx.conf $server_port 请求端口 $remote_addr 局域网代理IP:如果没同意任何代理的话$remote_addr 就是真 ...

  2. Open Physics

    1.开放物理计划. 开放物理计划,英文Open Physics.是AMD公司为自己的3A平台打造的物理模拟计算平台,以OpenCL为基础,由CPU+GPU联合计算完成.所谓“开放”,是指参与这个计划的 ...

  3. wordpress后台添加左侧边栏菜单如何操作

    我们有时为了方便操作会把一些特定的链接添加到wordpress后台左侧菜单栏中,这个要如何实现呢?其实不会很难,使用两个WordPress内置函数就可以解决问题,分别是add_menu_page()和 ...

  4. Java 静态、类加载

    1.静态是什么?有什么用? static的主要作用在于创建独立于具体对象的域变量或者方法. 每创建一个对象,都会在堆里开辟内存,存成员(属性),但是不存方法,方法是共用的,没必要每一个对象都浪费内存去 ...

  5. JSPDF支持中文(思源黑体)采坑之旅,JSPDF中文字体乱码解决方案

    我拍个砖,通常标称自己文章完美解决何种问题的,往往就是解决不了任何问题! 众所周知,JSPDF是一个开源的,易用的,但是对中文支持非常差的PDF库. 下面,我教大家,如何在pdf中使用思源黑体.思源黑 ...

  6. yii2 Query Builder 查询打印sql语句

    $query = new Query(); $query->select('gs.*, g.goods_images, sa.attr_name, sa.is_default, sa.alias ...

  7. IntelliJ IDEA 2019.2已经可以利用补丁永久破解激活了(持续更新)

    前面的文章中,一直在强调2019系列的idea无法使用补丁进行永久激活,但是最近发现,已经有大佬可以利用补丁将idea 2019.2及以下版本激活到2089年了,而且还不用改hosts,实在是佩服,不 ...

  8. 2018-2019-2 网络对抗技术 20165318 Exp7 网络欺诈防范

    2018-2019-2 网络对抗技术 20165318 Exp7 网络欺诈防范 原理与实践说明 实践目标 实践内容概述 基础问题回答 实践过程记录 简单应用SET工具建立冒名网站 ettercap D ...

  9. java对象转变为map

    直接上代码 package com.**.**.**.common; import com.**.**.**.util.JsonUtils; import org.springframework.be ...

  10. Python3.7 - Argparse模块的用法

    argparse 是一个命令行参数解析模块. argparse 是python自带的命令行参数解析包,可以用来方便地读取命令行参数,当你的代码需要频繁地修改参数的时候,使用这个工具可以将参数和代码分离 ...