LOJ575. 「LibreOJ NOI Round #2」不等关系 [容斥,分治FFT]
思路
发现既有大于又有小于比较难办,使用容斥,把大于改成任意减去小于的。
于是最后的串就长成这样:<<?<?<??<<<?<。我们把一段连续的<称作一条链。如果枚举大于号变成什么,那么最后的答案很容易算,就是\(\frac {n!}{\prod len!}\)。
\(dp_i\)表示前\(i\)个位置分成若干条链,带上容斥系数的方案数。
\(dp_i\)从\(dp_j\)转移,即\([j+1,i]\)这些位置用<连接,并且需要满足\(s_j\)为>。此时把这个>容斥成?,\([j+1,i]\)里面的>搞成<,即可转移。
记\(cnt_i\)表示\(s\)的前\(i\)个的>的位置个数,那么有
\]
分治FFT优化,没了。
代码
#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 401001
#define mod 998244353ll
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__zz=0;
inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register int x)
{
if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
while(__z[++__zz]=x%10+48,x/=10);
while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
}
void file()
{
#ifdef NTFOrz
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int n;
char s[sz];
ll dp[sz];
int cnt[sz];
ll fac[sz],_fac[sz];
void init(){_fac[0]=fac[0]=1;rep(i,1,sz-1) _fac[i]=inv(fac[i]=fac[i-1]*i%mod);}
int limit,r[sz];
void NTT_init(int n)
{
limit=1;int l=-1;
while (limit<=n+n) limit<<=1,++l;
rep(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
void NTT(ll *a,int type)
{
rep(i,0,limit-1) if (i<r[i]) swap(a[i],a[r[i]]);
for (int mid=1;mid<limit;mid<<=1)
{
ll Wn=ksm(3,(mod-1)/mid>>1);if (type==-1) Wn=inv(Wn);
for (int len=mid<<1,j=0;j<limit;j+=len)
{
ll w=1;
for (int k=0;k<mid;k++,w=w*Wn%mod)
{
ll x=a[j+k],y=w*a[j+k+mid]%mod;
a[j+k]=(x+y)%mod;a[j+k+mid]=(x-y+mod)%mod;
}
}
}
if (type==1) return;
ll I=inv(limit);
rep(i,0,limit-1) a[i]=a[i]*I%mod;
}
ll tmp1[sz],tmp2[sz];
void solve(int l,int r)
{
if (l==r) { if (l==0) return (void)(dp[l]=1); dp[l]=dp[l]*ksm(mod-1,cnt[l-1]+(l!=n+1?cnt[l]:0))%mod; return; }
int mid=(l+r)>>1;
solve(l,mid);
rep(i,l,mid) if (s[i]!='<') tmp1[i-l]=dp[i];
rep(i,0,r-l+1) tmp2[i]=_fac[i];
NTT_init(r-l+1);
NTT(tmp1,1);NTT(tmp2,1);
rep(i,0,limit-1) tmp1[i]=tmp1[i]*tmp2[i]%mod;
NTT(tmp1,-1);
rep(i,mid+1,r) (dp[i]+=tmp1[i-l])%=mod;
rep(i,0,limit-1) tmp1[i]=tmp2[i]=0;
solve(mid+1,r);
}
int main()
{
file();
init();
cin>>(s+1);n=strlen(s+1)+1;
rep(i,1,n-1) cnt[i]=cnt[i-1]+(s[i]=='>');
solve(0,n);
cout<<dp[n]*fac[n]%mod;
return 0;
}
LOJ575. 「LibreOJ NOI Round #2」不等关系 [容斥,分治FFT]的更多相关文章
- 「LibreOJ NOI Round #2」不等关系
「LibreOJ NOI Round #2」不等关系 解题思路 令 \(F(k)\) 为恰好有 \(k\) 个大于号不满足的答案,\(G(k)\) 表示钦点了 \(k\) 个大于号不满足,剩下随便填的 ...
- LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿
二次联通门 : LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 /* LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 dp 记录一下前驱 ...
- 「LibreOJ NOI Round #1」验题
麻烦的动态DP写了2天 简化题意:给树,求比给定独立集字典序大k的独立集是哪一个 主要思路: k排名都是类似二分的按位确定过程. 字典序比较本质是LCP下一位,故枚举LCP,看多出来了多少个独立集,然 ...
- #509. 「LibreOJ NOI Round #1」动态几何问题
下面给出部分分做法和满分做法 有一些奇妙的方法可以拿到同样多的分数,本蒟蒻只能介绍几种常见的做法 如果您想拿18分左右,需要了解:质因数分解 如果您想拿30分左右,需要了解:一种较快的筛法 如果您想拿 ...
- #510. 「LibreOJ NOI Round #1」动态几何问题
题目: 题解: 几何部分,先证明一下 \(KX = \sqrt{a},YL = \sqrt{b}\) 设左侧的圆心为 \(O\) ,连接 \(OK\) ,我们有 \(OK = r\). 然后有 \(r ...
- #507. 「LibreOJ NOI Round #1」接竹竿 dp
题目: 题解: 我们考虑把每对花色相同的牌看作区间. 那么如果我们设 \(f_i\) 表示决策在 \([1,i]\) 内的最优答案. 那么有 \(f_i = max\{max\{(f_{j-1}+\s ...
- LOJ#510. 「LibreOJ NOI Round #1」北校门外的回忆(线段树)
题面 传送门 题解 感谢\(@M\_sea\)的代码我总算看懂题解了-- 这个操作的本质就是每次把\(x\)的\(k\)进制最低位乘\(2\)并进位,根据基本同余芝士如果\(k\)是奇数那么最低位永远 ...
- LOJ 510: 「LibreOJ NOI Round #1」北校门外的回忆
题目传送门:LOJ #510. 题意简述: 给出一个在 \(K\) 进制下的树状数组,但是它的实现有问题. 形式化地说,令 \(\mathrm{lowbit}(x)\) 为在 \(K\) 进制下的 \ ...
- 「LibreOJ NOI Round #2」单枪匹马
嘟嘟嘟 这题没卡带一个\(log\)的,那么就很水了. 然后我因为好长时间没写矩阵优化dp,就只敲了一个暴力分--看来复习还是很关键的啊. 这个函数显然是从后往前递推的,那么令第\(i\)位的分子分母 ...
随机推荐
- Linux实现MYSQl数据库的定时备份
今天给大家分享一下如何在Linux下实现MYSQl数据库的定时备份. 前提需要保证你的Linux服务器已经安装了MYSQl数据库服务. 1.创建shell脚本 vim backupdb.sh 创建脚本 ...
- 每周分享五个 PyCharm 使用技巧(六)
大家好,今天我又来给大家更新 PyCharm 的使用技巧. 从今年3月24号开始一直到今天,将近四个月的时间.包括本篇,一共更新了6篇文章,每篇 5 个小技巧,总计 30 个. 这30个使用技巧,全部 ...
- 采集15个代理IP网站,打造免费代理IP池
采集的站点: 免费代理IP http://ip.yqie.com/ipproxy.htm66免费代理网 http://www.66ip.cn/89免费代理 http://www.89ip.cn/无忧代 ...
- windows下git创建本地分支并建立对应远程分支
在对应项目目录下打开命令提示符 git branch -a 查看所有本地和远程分支 git checkout -b [newBranch] 建立本地分支newBranch git p ...
- Github的fork进行同步
最近项目要求每个开发人员都有自己fork,需要在自己的fork下进行开发.这样就涉及的到fork和原仓库的同步问题. 在网上查找到fork和原仓库同步的方法,如下转载自网上查找的内容,使用终端命令行进 ...
- WPF如何设置启动窗口
在做系统时,我们想在启动时显示自己想显示的界面,和Winform不同的是它有两种方法 1.在App.xaml中 <Application x:Class="WpfApp1.App&qu ...
- 计算机网络原理,TCP&UDP
UDP伪首部:计算校验和时会用到,然后实际传输过程中里包含的IP地址没有什么用. UDP校验和计算:求数值之和,如果溢出回卷,最后求出反码;UDP伪首部,UDP首部,应用层数据相加 tcp报文,最短2 ...
- vue $refs操作DOM
原文链接:https://www.cnblogs.com/xumqfaith/p/7743387.html 如图,ref 被用来给元素或子组件注册引用信息.引用信息将会注册在父组件的 $refs 对象 ...
- 关于linux的档案随笔
刚才在看鸟哥的linux的私房菜,然后看到的部分是关于linux的档案配置部分,之前就强调过,在linux中所有的一切都是以档案的形式存在的,不过不同的文件有一定的区别,linux中是有副档案这个说法 ...
- Python_列表操作1
1.列表相关操作:声明,添加,删除,修改,获取len colors=['红','橙','黄','绿'] #声明一个列表 def colors_getall(): #获取列表中所有元素 return c ...