6801 棋盘覆盖 0x60「图论」例题

描述

给定一个N行N列的棋盘,已知某些格子禁止放置。求最多能往棋盘上放多少块的长度为2、宽度为1的骨牌,骨牌的边界与格线重合(骨牌占用两个格子),并且任意两张骨牌都不重叠。N≤100。

输入格式

第一行为n,t(表示有t个删除的格子)

第二行到t+1行为x,y,分别表示删除格子所在的位置

x为第x行,y为第y列,行列编号从1开始。

输出格式

一个数,即最多能放的骨牌数

样例输入

8 0

样例输出

32
        </article>

题解

1要素:每个格子只能被一张骨牌覆盖

0要素:行号加列号的和奇偶性相同的格子之间没有边

所以满足二分图二要素,跑二分图匹配即可。

时间复杂度\(O(n^4)\)

co int N=100,dx[4]={0,0,1,-1},dy[4]={1,-1,0,0};
int n,m,ans,f[N*N];
bool b[N][N],v[N*N];
vector<int> e[N*N];
bool dfs(int x){
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(v[y]) continue;
v[y]=1;
if(f[y]==-1||dfs(f[y])){
f[y]=x;
return 1;
}
}
return 0;
}
int main(){
read(n),read(m);
while(m--) b[read<int>()-1][read<int>()-1]=1;
for(int i=0;i<n;++i)for(int j=0;j<n;++j)if(!b[i][j])
for(int k=0;k<4;++k){
int x=i+dx[k],y=j+dy[k];
if(0<=x&&x<n&&0<=y&&y<n&&!b[x][y])
e[i*n+j].push_back(x*n+y),e[x*n+y].push_back(i*n+j);
}
memset(f,-1,sizeof f);
for(int i=0;i<n;++i)for(int j=0;j<n;++j){
if((i^j)&1) continue;
memset(v,0,sizeof v);
ans+=dfs(i*n+j);
}
printf("%d\n",ans);
return 0;
}

CH6801 棋盘覆盖的更多相关文章

  1. 「CH6801」棋盘覆盖

    「CH6801」棋盘覆盖 传送门 考虑将棋盘黑白染色,两个都无障碍的相邻的点之间连边,边的容量都为1,然后就求一次最大匹配即可 参考代码: #include <cstring> #incl ...

  2. bzoj 2706: [SDOI2012]棋盘覆盖 Dancing Link

    2706: [SDOI2012]棋盘覆盖 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 255  Solved: 77[Submit][Status] ...

  3. NYOJ 45 棋盘覆盖

    棋盘覆盖 水题,题不难,找公式难 import java.math.BigInteger; import java.util.Scanner; public class Main { public s ...

  4. 棋盘覆盖(大数阶乘,大数相除 + java)

    棋盘覆盖 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的 ...

  5. NYOJ 45 棋盘覆盖 模拟+高精度

    题意就不说了,中文题... 小白上讲了棋盘覆盖,于是我就挖了这题来做. 棋盘覆盖的推导不是很难理解,就是分治的思想,具体可以去谷歌下. 公式就是f(k) = f(k - 1) * 4 + 1,再化解下 ...

  6. 棋盘覆盖(一) ACM

    棋盘覆盖 描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的2×2方格(图2为其中缺右下角的一个),去覆盖2k×2k未被覆盖过的方格,求 ...

  7. 棋盘覆盖问题(算法分析)(Java版)

    1.问题描述: 在一个2k×2k个方格组成的棋盘中,若有一个方格与其他方格不同,则称该方格为一特殊方格,且称该棋盘为一个特殊棋盘.显然特殊方格在棋盘上出现的位置有种情形.因而对任何 k≥0,有4k种不 ...

  8. CODEVS 2171 棋盘覆盖

    2171 棋盘覆盖 给出一张nn(n<=100)的国际象棋棋盘,其中被删除了一些点,问可以使用多少12的多米诺骨牌进行掩盖. 错误日志: 直接在模板上调整 \(maxn\) 时没有在相应邻接表数 ...

  9. 递归与分治策略之棋盘覆盖Java实现

    递归与分治策略之棋盘覆盖 一.问题描述 二.过程详解 1.棋盘如下图,其中有一特殊方格:16*16 . 2.第一个分割结果:8*8 3.第二次分割结果:4*4 4.第三次分割结果:2*2 5.第四次分 ...

随机推荐

  1. Form表单验证组件

    Tyrion是一个基于Python实现的支持多个WEB框架的Form表单验证组件,其完美的支持Tornado.Django.Flask.Bottle Web框架.Tyrion主要有两大重要动能: 表单 ...

  2. 探索免费开源服务器tomcat的魅力

    Tomcat最初是由Sun的软件架构师詹姆斯·邓肯·戴维森开发的.后来他帮助将其变为开源项目,并由Sun贡献给Apache软件基金会,并且成为Jakarta 项目中的一个核心项目.因此逐渐成为世界上广 ...

  3. springcloud学习的坑

    一:启动Euerka作为提供者或者消费者时,启动失败报:Process finished with exit code 0 Unregistering application EUREKA-SERVI ...

  4. LeetCode 328. 奇偶链表(Odd Even Linked List)

    328. 奇偶链表 328. Odd Even Linked List 题目描述 给定一个单链表,把所有的奇数节点和偶数节点分别排在一起.请注意,这里的奇数节点和偶数节点指的是节点编号的奇偶性,而不是 ...

  5. Vue(六)插槽(2.6.0+)

    插槽在vue2.6.0开始有了新的更新 具名插槽(数据来自父组件) 子组件(定义插槽)这里版本前后没什么变化 <template> <div> <header> & ...

  6. gitlab升级备份

    一.备份有关备份和恢复的操作,详见我的另一篇博客:Gitlab的备份与恢复在开始升级之前,一定要做好备份工作,并记录好版本号.1.查看当前Gitlab的版本号 [root@gitlab ~]# cat ...

  7. Word 自带公式编写多行公式时在任意位置对齐 -- 含视频教程(10)

    1. 方法1:表格法之利用"点"运算符对齐(简单) 以下百度经验是我自己写的,不想放在上边了,移到这里. 2. 方法2:表格法之制表位对齐法(复杂) 未完 ...... 点击访问原 ...

  8. Crazy Binary String(前缀和)(2019牛客暑期多校训练营(第三场))

    示例: 输入: 801001001 输出:4 6 题意:一段长度为n且只有 ‘0’ 和 ‘1’ 的字符串,求子串中 ‘0’ 和 ‘1’ 数目相等和子序列中 ‘0’ 和 ‘1’ 数目相等的最大长度. 思 ...

  9. Js学习02--变量、关键字、标识符

    一.Js变量的定义 1.定义变量的目的 在内存中分配一块存储空间给变量,方便以后存储数据. 2.如何定义变量 任何变量在使用前都必须定义变量 var 变量名称 eg: var name,age,sex ...

  10. JSVC安装

    执行./start-all.sh启动hadoop时报错 Starting datanodes node1: ERROR: Cannot set priority of datanode process ...