SB 题。

写出 DP 方程:\(f_i\) 表示从 \(i\) 跳的最小值。

\(i\) 是叶子就是 \(0\),否则就是选个子树中的 \(v\),\(f_i=\min(f_v+a_ib_v)\)。

至于优化,求出每个子树中的凸包就行了。启发式合并保证复杂度。

复杂度 \(O(n\log^2 n)\)。

没错,我又用了回家路线那又臭又长的写法。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=100010;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
struct line{
int k;
ll b;
bool operator<(const line &l)const{
if(k!=l.k) return k>l.k;
return b<l.b;
}
};
struct point{
double x;
int k;
ll b;
bool operator<(const point &p)const{return x<p.x;}
};
int n,el,head[maxn],to[maxn*2],nxt[maxn*2],A[maxn],B[maxn];
ll f[maxn];
set<line> inter[maxn];
set<point> hull[maxn];
inline void add(int u,int v){to[++el]=v;nxt[el]=head[u];head[u]=el;}
double interx(line l1,line l2){
return l1.k==l2.k?1e18:1.0*(l2.b-l1.b)/(l1.k-l2.k);
}
void remove(int id,set<line>::iterator it){
set<line>::iterator it1=it,it2=it;it2++;
if(it1!=inter[id].begin()){
it1--;
hull[id].erase((point){interx(*it,*it1),it1->k,it1->b});
it1++;
}
if(it2!=inter[id].end()) hull[id].erase((point){interx(*it,*it2),it->k,it->b});
if(it1!=inter[id].begin() && it2!=inter[id].end()){
it1--;
hull[id].insert((point){interx(*it1,*it2),it1->k,it1->b});
}
inter[id].erase(it);
}
void insert(int id,line l){
set<line>::iterator it=inter[id].insert(l).first;
set<line>::iterator it1=it,it2=it;it2++;
if(it1!=inter[id].begin()){
it1--;
if(it1->k==it->k) return void(inter[id].erase(*it));
it1++;
}
if(it1!=inter[id].begin() && it2!=inter[id].end()){
it1--;
if(interx(*it,*it1)>=interx(*it,*it2)) return void(inter[id].erase(*it));
it1++;
}
if(it1!=inter[id].begin()){
it1--;
hull[id].insert((point){interx(*it,*it1),it1->k,it1->b});
it1++;
}
if(it2!=inter[id].end()) hull[id].insert((point){interx(*it,*it2),it->k,it->b});
if(it1!=inter[id].begin() && it2!=inter[id].end()){
it1--;
hull[id].erase((point){interx(*it1,*it2),it1->k,it1->b});
it1++;
}
it=it1=inter[id].find(l);
while(it1!=inter[id].begin()){
it1--;
if(it1==inter[id].begin()) break;
it2=it1;it2--;
if(interx(*it2,*it)<=interx(*it2,*it1)) remove(id,it1);
else break;
it=it1=inter[id].find(l);
}
it=it1=inter[id].find(l);it1++;
while(it1!=inter[id].end()){
it2=it1;it2++;
if(it2!=inter[id].end() && interx(*it2,*it)>=interx(*it2,*it1) || it1->k==it->k) remove(id,it1);
else break;
it=it1=inter[id].find(l);it1++;
}
}
void dfs(int u,int F){
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(v==F) continue;
dfs(v,u);
if(inter[u].size()<inter[v].size()) inter[u].swap(inter[v]),hull[u].swap(hull[v]);
for(set<line>::iterator it=inter[v].begin();it!=inter[v].end();it++) insert(u,*it);
inter[v].clear();hull[v].clear();
}
if(!inter[u].empty()){
set<point>::iterator it=hull[u].lower_bound((point){A[u],0,0});
int k;
ll b;
if(it==hull[u].end()){
set<line>::iterator it=inter[u].end();it--;
k=it->k;b=it->b;
}
else k=it->k,b=it->b;
f[u]=1ll*k*A[u]+b;
}
insert(u,(line){B[u],f[u]});
}
int main(){
n=read();
FOR(i,1,n) A[i]=read();
FOR(i,1,n) B[i]=read();
FOR(i,1,n-1){
int u=read(),v=read();
add(u,v);add(v,u);
}
dfs(1,0);
FOR(i,1,n) printf("%lld ",f[i]);
}

CF932F Escape Through Leaf(DP,斜率优化)的更多相关文章

  1. CF932F Escape Through Leaf

    CF932F Escape Through Leaf 首先, $ O(n^2) $ dp 是很显然的,方程长这样: \[dp[u] = min\{dp[v] + a_u\times b_v\} \] ...

  2. 【BZOJ-4518】征途 DP + 斜率优化

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 230  Solved: 156[Submit][Status][ ...

  3. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

  4. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  5. 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...

  6. BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)

    [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...

  7. 学渣乱搞系列之dp斜率优化

    学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很 ...

  8. DP斜率优化总结

    目录 DP斜率优化总结 任务安排1 任务计划2 任务安排3 百日旅行 DP斜率优化总结 任务安排1 首先引入一道题,先\(O(N^2)\)做法:分别预处理出\(T_i,C_i\)前缀和\(t[i],c ...

  9. HDU 3507 [Print Article]DP斜率优化

    题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...

  10. dp斜率优化

    算法-dp斜率优化 前置知识: 凸包 斜率优化很玄学,凭空讲怎么也讲不好,所以放例题. [APIO2014]序列分割 [APIO2014]序列分割 给你一个长度为 \(n\) 的序列 \(a_1,a_ ...

随机推荐

  1. ros局部路径规划-DWA学习

    ROS的路径规划器分为全局路径和局部路径规划,其中局部路径规划器使用的最广的为dwa,个人理解为: 首先全局路径规划会生成一条大致的全局路径,局部路径规划器会把全局路径给分段,然后根据分段的全局路径的 ...

  2. 一个比 AutoMapper 更快的模型映射的组件 Mapster

    下面是官方的性能测试 Demo,感性的也可以去 Github 上下载. 贴出代码目的是如果后期直接从自己的博客中在线看. using System; using System.Collections. ...

  3. EntityFrameworkCore 学习笔记之示例一

    直接贴代码了: 1. Program.cs using Microsoft.EntityFrameworkCore; using System; using System.Threading.Task ...

  4. 『月之谜 数位dp』

    月之谜 Description 打败了Lord lsp 之后,由 于lqr 是一个心地善良的女孩 子,她想净化Lord lsp 黑化的 心,使他变回到原来那个天然 呆的lsp--在倒霉的光之英 雄ap ...

  5. 【03】Nginx:location / root / alias

    写在前面的话 前面我们谈了 nginx 基础的 WEB 服务配置以及定制我们的日志显示格式,接下来我能更加详细的说说 server 字段. location 字段 在 Server 中,如果我们只是一 ...

  6. DVWA-CSRF学习笔记

    DVWA-CSRF学习笔记 一.CSRF(跨站请求伪造) CSRF(跨站请求伪造),是指利用受害者尚未失效的身份认证信息(cookie.session会话等),诱骗其点击恶意链接或者访问包含攻击代码的 ...

  7. yii2.0的学习之旅(二)

    前言:上一次我们简单认识了一下yii2.0安装,模型基本(增,删,改,查)操作 一.前后台数据交互 *如果你觉得默认的top样式太丑,可以这样关掉* *底部也可以这样关掉* (1)mvc合作操作数据 ...

  8. Winform中设置ZedGraph当前所有曲线的颜色

    场景 Winforn中设置ZedGraph曲线图的属性.坐标轴属性.刻度属性: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/10 ...

  9. vue-router 在项目中的使用

    一.下载vue-router npm install vue-router --save 二.编码 1.在项目中新建文件夹 router/index.js /* * 路由对象模块 * */ impor ...

  10. 使用qwt作曲线图——有网格线背景的画法

    创建自己的QwtPlot (1)     增加一个类比如curvePlotWidget,继承自QwtPlot (2)代码示例 curvePlotWidget::curvePlotWidget(QWid ...