CF932F Escape Through Leaf(DP,斜率优化)
SB 题。
写出 DP 方程:\(f_i\) 表示从 \(i\) 跳的最小值。
\(i\) 是叶子就是 \(0\),否则就是选个子树中的 \(v\),\(f_i=\min(f_v+a_ib_v)\)。
至于优化,求出每个子树中的凸包就行了。启发式合并保证复杂度。
复杂度 \(O(n\log^2 n)\)。
没错,我又用了回家路线那又臭又长的写法。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=100010;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
struct line{
int k;
ll b;
bool operator<(const line &l)const{
if(k!=l.k) return k>l.k;
return b<l.b;
}
};
struct point{
double x;
int k;
ll b;
bool operator<(const point &p)const{return x<p.x;}
};
int n,el,head[maxn],to[maxn*2],nxt[maxn*2],A[maxn],B[maxn];
ll f[maxn];
set<line> inter[maxn];
set<point> hull[maxn];
inline void add(int u,int v){to[++el]=v;nxt[el]=head[u];head[u]=el;}
double interx(line l1,line l2){
return l1.k==l2.k?1e18:1.0*(l2.b-l1.b)/(l1.k-l2.k);
}
void remove(int id,set<line>::iterator it){
set<line>::iterator it1=it,it2=it;it2++;
if(it1!=inter[id].begin()){
it1--;
hull[id].erase((point){interx(*it,*it1),it1->k,it1->b});
it1++;
}
if(it2!=inter[id].end()) hull[id].erase((point){interx(*it,*it2),it->k,it->b});
if(it1!=inter[id].begin() && it2!=inter[id].end()){
it1--;
hull[id].insert((point){interx(*it1,*it2),it1->k,it1->b});
}
inter[id].erase(it);
}
void insert(int id,line l){
set<line>::iterator it=inter[id].insert(l).first;
set<line>::iterator it1=it,it2=it;it2++;
if(it1!=inter[id].begin()){
it1--;
if(it1->k==it->k) return void(inter[id].erase(*it));
it1++;
}
if(it1!=inter[id].begin() && it2!=inter[id].end()){
it1--;
if(interx(*it,*it1)>=interx(*it,*it2)) return void(inter[id].erase(*it));
it1++;
}
if(it1!=inter[id].begin()){
it1--;
hull[id].insert((point){interx(*it,*it1),it1->k,it1->b});
it1++;
}
if(it2!=inter[id].end()) hull[id].insert((point){interx(*it,*it2),it->k,it->b});
if(it1!=inter[id].begin() && it2!=inter[id].end()){
it1--;
hull[id].erase((point){interx(*it1,*it2),it1->k,it1->b});
it1++;
}
it=it1=inter[id].find(l);
while(it1!=inter[id].begin()){
it1--;
if(it1==inter[id].begin()) break;
it2=it1;it2--;
if(interx(*it2,*it)<=interx(*it2,*it1)) remove(id,it1);
else break;
it=it1=inter[id].find(l);
}
it=it1=inter[id].find(l);it1++;
while(it1!=inter[id].end()){
it2=it1;it2++;
if(it2!=inter[id].end() && interx(*it2,*it)>=interx(*it2,*it1) || it1->k==it->k) remove(id,it1);
else break;
it=it1=inter[id].find(l);it1++;
}
}
void dfs(int u,int F){
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(v==F) continue;
dfs(v,u);
if(inter[u].size()<inter[v].size()) inter[u].swap(inter[v]),hull[u].swap(hull[v]);
for(set<line>::iterator it=inter[v].begin();it!=inter[v].end();it++) insert(u,*it);
inter[v].clear();hull[v].clear();
}
if(!inter[u].empty()){
set<point>::iterator it=hull[u].lower_bound((point){A[u],0,0});
int k;
ll b;
if(it==hull[u].end()){
set<line>::iterator it=inter[u].end();it--;
k=it->k;b=it->b;
}
else k=it->k,b=it->b;
f[u]=1ll*k*A[u]+b;
}
insert(u,(line){B[u],f[u]});
}
int main(){
n=read();
FOR(i,1,n) A[i]=read();
FOR(i,1,n) B[i]=read();
FOR(i,1,n-1){
int u=read(),v=read();
add(u,v);add(v,u);
}
dfs(1,0);
FOR(i,1,n) printf("%lld ",f[i]);
}
CF932F Escape Through Leaf(DP,斜率优化)的更多相关文章
- CF932F Escape Through Leaf
CF932F Escape Through Leaf 首先, $ O(n^2) $ dp 是很显然的,方程长这样: \[dp[u] = min\{dp[v] + a_u\times b_v\} \] ...
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
- BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)
[ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...
- 学渣乱搞系列之dp斜率优化
学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很 ...
- DP斜率优化总结
目录 DP斜率优化总结 任务安排1 任务计划2 任务安排3 百日旅行 DP斜率优化总结 任务安排1 首先引入一道题,先\(O(N^2)\)做法:分别预处理出\(T_i,C_i\)前缀和\(t[i],c ...
- HDU 3507 [Print Article]DP斜率优化
题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...
- dp斜率优化
算法-dp斜率优化 前置知识: 凸包 斜率优化很玄学,凭空讲怎么也讲不好,所以放例题. [APIO2014]序列分割 [APIO2014]序列分割 给你一个长度为 \(n\) 的序列 \(a_1,a_ ...
随机推荐
- pip 设置阿里云源
在~/.pip/pip.conf文件中添加或修改 mkdir ~/.pip [global] index-url = http://mirrors.aliyun.com/pypi/simple/ [i ...
- 海边拾贝-B-优秀博客/网站
记下若干优秀博客,方便后期检索.会不定期更新: 优秀的程序员,从使用Github开始:https://help.github.com/en/github/managing-your-work-on-g ...
- linux基础学习路线&review
linux基础学习网址: https://www.runoob.com/linux/linux-tutorial.html 比较重点的是这个启动过程的介绍学习:https://www.runoob.c ...
- CSS选择器[attribute | = value] 和 [attribute ^ = value]的区别
前言 首先你需要知道[attribute | = value] 和 [attribute ^ = value] 分别是什么? ①:[attribute | = value] ②:[attribute ...
- Vue.js 源码分析(二十) 指令篇 v-once指令详解
数据绑定最常见的形式就是使用“Mustache”语法 (双大括号) 的文本插值,例如:<p>Message: {{ msg }}</p>以后每当msg属性发生了改变,插值处的内 ...
- redis命令之 ----Set(集合)
SADD SADD key member [member ...] 将一个或多个 member 元素加入到集合 key 当中,已经存在于集合的 member 元素将被忽略. 假如 key 不存在,则创 ...
- 记录自己运行eShopOnContainers过程中遇到的坑
由于各种各样的问题,依照官方文档运行eShopOnContainers项目遇到了好多莫名其妙的错误. 好在最后都解决了,在此记录,以防自己以后再遇到,也为遇到同样问题的同学提供参考. 参考的官方文档 ...
- .NET WebFrom跨时区项目时间问题处理方法
前段时间因为公司的一个 WebFrom 项目设计到跨时区的问题,处理了一段时间,终于解决了,写个博客记录一下,方便以后回顾以及给他人提供一个参考的方法. 本次的项目因为跨越了多个时区,在一些时间上会受 ...
- VMware 虚拟机网络配置
随手记: 近期需要安装几个服务器,编写负载均衡NLB的教程,使用到虚拟机: VMware-workstation-full-15.0.2-10952284.exe cn_windows_server_ ...
- golang多个项目时如何配置GOPATH,使用gb包依赖管理工具,不同项目配置不同的GOPATH的
golang多个项目时如何配置GOPATH,使用gb包依赖管理工具,不同项目配置不同的GOPATH的 1:执行脚本setGoPath.sh#!/bin/bashif [[ $GOPATH =~ .*$ ...