题目链接

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.
An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6
题意:由n个点构成的图,其中np个点为发电站最大发电量为zi,nc个点为用户最大消耗电量为zj,剩余点为中转点不产电也不消耗电,求此电网最大消耗电量?
 
思路:可将np个发电站看做源点,nc个用户点看做汇点,为了构成单源单汇点,增加一个源点0连向np个发电站,其边权为发电站的最大发电量;增加一个汇点n+1,由所有的用户连向汇点n+1,其边权为用户的最大消耗电量。此时,就变成了单纯的最大流问题。
 
注:第一次写Dinic最大流代码,简单介绍一下Dinic算法:
  EK(EdmondsKarp)最大流的思想为,每次采用bfs搜索找到一条增广路(设流量为flow),改变这条路径上的所有的边权值都减少flow,同时这条路径上的所有反向边权值增加flow,重复直至找不到增广路为止。
  Dinic算法很明显是EK的一个优化算法,其先采用 bfs 将图按深度分层,然后 dfs 找到所有的增广路并同样改变所有的边权值以及反向边的权值,很明显这样dfs贪心的找到所有的增广路并不是最优解,故循环再用bfs重新分层,dfs找增广路,直到bfs分层没有路径能走到汇点,此时即是最大流量了。
 
最大流Dinic代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <queue>
using namespace std;
const int N = ;
const int MAXN = 1e9 + ; struct Edge {
int to;
int value;
int next;
}e[*N*N];
int head[N], cnt;
int deep[N];
int n, np, nc, m; void insert(int u, int v, int value) {
e[++cnt].to = v;
e[cnt].value = value;
e[cnt].next = head[u];
head[u] = cnt;
} void init() {
memset(head, -, sizeof(head));
cnt = -;
} bool BFS() {
memset(deep,-,sizeof(deep));
queue<int> Q;
deep[] = ;
Q.push();
while (!Q.empty()) {
int u = Q.front();
Q.pop();
for (int edge = head[u]; edge != -; edge = e[edge].next) {
int v = e[edge].to;
if (deep[v] == - && e[edge].value > ) {
deep[v] = deep[u] + ;
Q.push(v);
}
}
}
if (deep[n + ] == -) return false;
return true;
} int DFS(int u,int flow_pre) {
if (u == n + ) return flow_pre;
int flow = ;
for (int edge = head[u]; edge != -; edge = e[edge].next) {
int v = e[edge].to;
if (deep[v] != deep[u]+ || e[edge].value==) continue;
int _flow= DFS(v, min(flow_pre, e[edge].value));
flow_pre -= _flow;
flow += _flow;
e[edge].value -= _flow;
e[edge ^ ].value += _flow;
if (flow_pre == ) break;
}
if (flow == ) deep[u] = -;
return flow;
}
int GetMaxFlow() {
int ans = ;
while (BFS()) {
ans += DFS(,MAXN);
}
return ans;
}
int main()
{
while (scanf("%d%d%d%d", &n, &np, &nc, &m) != EOF) {
init();
int u, v, z;
for (int i = ; i < m; i++) {
scanf(" (%d,%d)%d", &u, &v, &z);
insert(u+, v+, z);
insert(v+, u+, );
}
for (int i = ; i < np; i++) {
scanf(" (%d)%d", &u, &z);
insert(, u+, z);
insert(u+, , );
}
for (int i = ; i < nc; i++) {
scanf(" (%d)%d", &u, &z);
insert(u + , n + , z);
insert(n + , u + , );
}
printf("%d\n",GetMaxFlow());
}
}
 

网络流之最大流Dinic --- poj 1459的更多相关文章

  1. 网络流之最大流EK --- poj 1459

    题目链接 本篇博客延续上篇博客(最大流Dinic算法)的内容,此次使用EK算法解决最大流问题. EK算法思想:在图中搜索一条从源点到汇点的扩展路,需要记录这条路径,将这条路径的最大可行流量 liu 增 ...

  2. 网络流之最大流Dinic算法模版

    /* 网络流之最大流Dinic算法模版 */ #include <cstring> #include <cstdio> #include <queue> using ...

  3. 我爱网络流之最大流Dinic

    直接上大佬博客: Dinic算法详解及实现来自小菲进修中 Dinic算法(研究总结,网络流)来自SYCstudio 模板步骤: 第一步,先bfs把图划分成分成分层图网络 第二步,dfs多次找增广路 当 ...

  4. 网络流(最大流-Dinic算法)

    摘自https://www.cnblogs.com/SYCstudio/p/7260613.html 网络流定义 在图论中,网络流(Network flow)是指在一个每条边都有容量(Capacity ...

  5. [Poj2112][USACO2003 US OPEN] Optimal Milking [网络流,最大流][Dinic+当前弧优化]

    题意:有K个挤奶机编号1~K,有C只奶牛编号(K+1)~(C+K),每个挤奶机之多能挤M头牛,现在让奶牛走到挤奶机处,求奶牛所走的最长的一条边至少是多少. 题解:从起点向挤奶机连边,容量为M,从挤奶机 ...

  6. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  7. POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流)

    POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流) Description Yo ...

  8. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  9. poj 1459 多源多汇点最大流

    Sample Input 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 ...

随机推荐

  1. Jmeter+Jenkins的HTML报告中添加QPS、90%栏目显示

    1.进入jmeter/extras目录,修改 jmeter-results-detail-report_21.xsl   2.打开文件 在summary部分修改如下: 在pagelist部分修改如下: ...

  2. Requests text乱码

    都在推荐用Requests库,而不是Urllib,但是读取网页的时候中文会出现乱码. 分析: r = requests.get(“http://www.baidu.com“) **r.text返回的是 ...

  3. 动态添加Redis密码认证的方法

    1.定制jedis 对redis返回的错误的处理,做两处修改: 忽略 (error) ERR Client sent AUTH, but no password is set.使配置了密码的jedis ...

  4. Python IO 模式

    IO 模式 对于 Linux 的 network IO: 一次 IO 访问(以read举例),数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区 copy 到应用程序的地址空间.所 ...

  5. Kavex GameDev-Resources

    https://github.com/Kavex/GameDev-Resources 各种资源

  6. JAVA基础系列:Object类

    1. 万物皆对象 1. JVM在编译源代码时,在遇到没有继承Object的对象的时候,编译器会默认指定一个默认的父类Object 2. Object 和接口的关系,接口是否继承Object?接口没有继 ...

  7. 为Azure DevOps Server (TFS) 配置安全访问(HTTPS with SSL)

    Contents 1. 概述 2. HTTP和HTTS比较 支持HTTP和HTTPS两种方式 要求所有连接使用HTTPS 优点: 缺点: 3. 为Azure DevOps Server 配置安全访问 ...

  8. pandas使用大全--数据与处理

    1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as pd 导入CSV或者xlsx文件: df = pd. ...

  9. .Net轻松处理亿级数据--clickhouse及可视化界面安装介绍

    该篇内容由个人博客点击跳转同步更新!转载请注明出处! 前言 我是在17年就听说过Clickhouse,那时还未接触过亿数据的运算,那时我在的小公司对于千万数据的解决方案还停留在分库分表,最好的也是使用 ...

  10. Javascript 实现倒计时效果

    代码来自于网上. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://ww ...