题目链接

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.
An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6
题意:由n个点构成的图,其中np个点为发电站最大发电量为zi,nc个点为用户最大消耗电量为zj,剩余点为中转点不产电也不消耗电,求此电网最大消耗电量?
 
思路:可将np个发电站看做源点,nc个用户点看做汇点,为了构成单源单汇点,增加一个源点0连向np个发电站,其边权为发电站的最大发电量;增加一个汇点n+1,由所有的用户连向汇点n+1,其边权为用户的最大消耗电量。此时,就变成了单纯的最大流问题。
 
注:第一次写Dinic最大流代码,简单介绍一下Dinic算法:
  EK(EdmondsKarp)最大流的思想为,每次采用bfs搜索找到一条增广路(设流量为flow),改变这条路径上的所有的边权值都减少flow,同时这条路径上的所有反向边权值增加flow,重复直至找不到增广路为止。
  Dinic算法很明显是EK的一个优化算法,其先采用 bfs 将图按深度分层,然后 dfs 找到所有的增广路并同样改变所有的边权值以及反向边的权值,很明显这样dfs贪心的找到所有的增广路并不是最优解,故循环再用bfs重新分层,dfs找增广路,直到bfs分层没有路径能走到汇点,此时即是最大流量了。
 
最大流Dinic代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <queue>
using namespace std;
const int N = ;
const int MAXN = 1e9 + ; struct Edge {
int to;
int value;
int next;
}e[*N*N];
int head[N], cnt;
int deep[N];
int n, np, nc, m; void insert(int u, int v, int value) {
e[++cnt].to = v;
e[cnt].value = value;
e[cnt].next = head[u];
head[u] = cnt;
} void init() {
memset(head, -, sizeof(head));
cnt = -;
} bool BFS() {
memset(deep,-,sizeof(deep));
queue<int> Q;
deep[] = ;
Q.push();
while (!Q.empty()) {
int u = Q.front();
Q.pop();
for (int edge = head[u]; edge != -; edge = e[edge].next) {
int v = e[edge].to;
if (deep[v] == - && e[edge].value > ) {
deep[v] = deep[u] + ;
Q.push(v);
}
}
}
if (deep[n + ] == -) return false;
return true;
} int DFS(int u,int flow_pre) {
if (u == n + ) return flow_pre;
int flow = ;
for (int edge = head[u]; edge != -; edge = e[edge].next) {
int v = e[edge].to;
if (deep[v] != deep[u]+ || e[edge].value==) continue;
int _flow= DFS(v, min(flow_pre, e[edge].value));
flow_pre -= _flow;
flow += _flow;
e[edge].value -= _flow;
e[edge ^ ].value += _flow;
if (flow_pre == ) break;
}
if (flow == ) deep[u] = -;
return flow;
}
int GetMaxFlow() {
int ans = ;
while (BFS()) {
ans += DFS(,MAXN);
}
return ans;
}
int main()
{
while (scanf("%d%d%d%d", &n, &np, &nc, &m) != EOF) {
init();
int u, v, z;
for (int i = ; i < m; i++) {
scanf(" (%d,%d)%d", &u, &v, &z);
insert(u+, v+, z);
insert(v+, u+, );
}
for (int i = ; i < np; i++) {
scanf(" (%d)%d", &u, &z);
insert(, u+, z);
insert(u+, , );
}
for (int i = ; i < nc; i++) {
scanf(" (%d)%d", &u, &z);
insert(u + , n + , z);
insert(n + , u + , );
}
printf("%d\n",GetMaxFlow());
}
}
 

网络流之最大流Dinic --- poj 1459的更多相关文章

  1. 网络流之最大流EK --- poj 1459

    题目链接 本篇博客延续上篇博客(最大流Dinic算法)的内容,此次使用EK算法解决最大流问题. EK算法思想:在图中搜索一条从源点到汇点的扩展路,需要记录这条路径,将这条路径的最大可行流量 liu 增 ...

  2. 网络流之最大流Dinic算法模版

    /* 网络流之最大流Dinic算法模版 */ #include <cstring> #include <cstdio> #include <queue> using ...

  3. 我爱网络流之最大流Dinic

    直接上大佬博客: Dinic算法详解及实现来自小菲进修中 Dinic算法(研究总结,网络流)来自SYCstudio 模板步骤: 第一步,先bfs把图划分成分成分层图网络 第二步,dfs多次找增广路 当 ...

  4. 网络流(最大流-Dinic算法)

    摘自https://www.cnblogs.com/SYCstudio/p/7260613.html 网络流定义 在图论中,网络流(Network flow)是指在一个每条边都有容量(Capacity ...

  5. [Poj2112][USACO2003 US OPEN] Optimal Milking [网络流,最大流][Dinic+当前弧优化]

    题意:有K个挤奶机编号1~K,有C只奶牛编号(K+1)~(C+K),每个挤奶机之多能挤M头牛,现在让奶牛走到挤奶机处,求奶牛所走的最长的一条边至少是多少. 题解:从起点向挤奶机连边,容量为M,从挤奶机 ...

  6. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  7. POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流)

    POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流) Description Yo ...

  8. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  9. poj 1459 多源多汇点最大流

    Sample Input 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 ...

随机推荐

  1. python的gRPC示例

    参考URL: https://segmentfault.com/a/1190000015220713?utm_source=channel-hottest gRPC 是一个高性能.开源和通用的 RPC ...

  2. Rest微服务案例(二)

    1. 创建父工程 Maven Project 新建父工程microservicecloud,packaging是pom模式,pom.xml内容如下: <!-- SpringBoot父依赖 --& ...

  3. luoguP4103 [HEOI2014]大工程

    题意 建出虚树DP. 设\(f[i]\)表示i的子树的第一问答案,\(minn[i]\)表示\(i\)的子树中到\(i\)最近的关键点,\(maxx[i]\)表示\(i\)的子树中到i距离最远的关键点 ...

  4. table的常用属性

    Table属性: Cellspacing:单元格与单元格之间或者单元格与表格之间的 距离. Cellpadding:单元格边框与内容之间的距离 Colspan:跨列.合并列. Rowspan:跨行,行 ...

  5. 2019 SDN阅读作业(2)

    1.过去20年中可编程网络的发展可以分为几个阶段?每个阶段的贡献是什么? 可编程网络的发展可以分为以下三个阶段: (1)主动网络(Active networking,20世纪90年代中期到21世纪初) ...

  6. 【CometOJ】Comet OJ - Contest #8 解题报告

    点此进入比赛 \(A\):杀手皇后(点此看题面) 大致题意: 求字典序最小的字符串. 一场比赛总有送分题... #include<bits/stdc++.h> #define Tp tem ...

  7. Asp.Net Core 工作单元 UnitOfWork UOW

    Asp.Net Core 工作单元示例 来自 ABP UOW 去除所有无用特性 代码下载 : 去除所有无用特性版本,原生AspNetCore实现 差不多 2278 行代码: 链接:https://pa ...

  8. 强大的性能监测工具dstat

    强大的性能监测工具dstat 本节分为以下几个部分: dstat介绍: dstat命令是一个用来替换vmstat.iostat.netstat.nfsstat和ifstat这些命令的工具,是一个全能系 ...

  9. python asyncio asyncio wait

    import asyncio import time async def get_html(url): print("start get url") await asyncio.s ...

  10. 初探云原生应用管理(一): Helm 与 App Hub

      ​ 系列介绍:初探云原生应用管理系列是介绍如何用云原生技术来构建.测试.部署.和管理应用的内容专辑.做这个系列的初衷是为了推广云原生应用管理的最佳实践,以及传播开源标准和知识.通过这个系列,希望帮 ...