题目链接

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.
An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6
题意:由n个点构成的图,其中np个点为发电站最大发电量为zi,nc个点为用户最大消耗电量为zj,剩余点为中转点不产电也不消耗电,求此电网最大消耗电量?
 
思路:可将np个发电站看做源点,nc个用户点看做汇点,为了构成单源单汇点,增加一个源点0连向np个发电站,其边权为发电站的最大发电量;增加一个汇点n+1,由所有的用户连向汇点n+1,其边权为用户的最大消耗电量。此时,就变成了单纯的最大流问题。
 
注:第一次写Dinic最大流代码,简单介绍一下Dinic算法:
  EK(EdmondsKarp)最大流的思想为,每次采用bfs搜索找到一条增广路(设流量为flow),改变这条路径上的所有的边权值都减少flow,同时这条路径上的所有反向边权值增加flow,重复直至找不到增广路为止。
  Dinic算法很明显是EK的一个优化算法,其先采用 bfs 将图按深度分层,然后 dfs 找到所有的增广路并同样改变所有的边权值以及反向边的权值,很明显这样dfs贪心的找到所有的增广路并不是最优解,故循环再用bfs重新分层,dfs找增广路,直到bfs分层没有路径能走到汇点,此时即是最大流量了。
 
最大流Dinic代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <queue>
using namespace std;
const int N = ;
const int MAXN = 1e9 + ; struct Edge {
int to;
int value;
int next;
}e[*N*N];
int head[N], cnt;
int deep[N];
int n, np, nc, m; void insert(int u, int v, int value) {
e[++cnt].to = v;
e[cnt].value = value;
e[cnt].next = head[u];
head[u] = cnt;
} void init() {
memset(head, -, sizeof(head));
cnt = -;
} bool BFS() {
memset(deep,-,sizeof(deep));
queue<int> Q;
deep[] = ;
Q.push();
while (!Q.empty()) {
int u = Q.front();
Q.pop();
for (int edge = head[u]; edge != -; edge = e[edge].next) {
int v = e[edge].to;
if (deep[v] == - && e[edge].value > ) {
deep[v] = deep[u] + ;
Q.push(v);
}
}
}
if (deep[n + ] == -) return false;
return true;
} int DFS(int u,int flow_pre) {
if (u == n + ) return flow_pre;
int flow = ;
for (int edge = head[u]; edge != -; edge = e[edge].next) {
int v = e[edge].to;
if (deep[v] != deep[u]+ || e[edge].value==) continue;
int _flow= DFS(v, min(flow_pre, e[edge].value));
flow_pre -= _flow;
flow += _flow;
e[edge].value -= _flow;
e[edge ^ ].value += _flow;
if (flow_pre == ) break;
}
if (flow == ) deep[u] = -;
return flow;
}
int GetMaxFlow() {
int ans = ;
while (BFS()) {
ans += DFS(,MAXN);
}
return ans;
}
int main()
{
while (scanf("%d%d%d%d", &n, &np, &nc, &m) != EOF) {
init();
int u, v, z;
for (int i = ; i < m; i++) {
scanf(" (%d,%d)%d", &u, &v, &z);
insert(u+, v+, z);
insert(v+, u+, );
}
for (int i = ; i < np; i++) {
scanf(" (%d)%d", &u, &z);
insert(, u+, z);
insert(u+, , );
}
for (int i = ; i < nc; i++) {
scanf(" (%d)%d", &u, &z);
insert(u + , n + , z);
insert(n + , u + , );
}
printf("%d\n",GetMaxFlow());
}
}
 

网络流之最大流Dinic --- poj 1459的更多相关文章

  1. 网络流之最大流EK --- poj 1459

    题目链接 本篇博客延续上篇博客(最大流Dinic算法)的内容,此次使用EK算法解决最大流问题. EK算法思想:在图中搜索一条从源点到汇点的扩展路,需要记录这条路径,将这条路径的最大可行流量 liu 增 ...

  2. 网络流之最大流Dinic算法模版

    /* 网络流之最大流Dinic算法模版 */ #include <cstring> #include <cstdio> #include <queue> using ...

  3. 我爱网络流之最大流Dinic

    直接上大佬博客: Dinic算法详解及实现来自小菲进修中 Dinic算法(研究总结,网络流)来自SYCstudio 模板步骤: 第一步,先bfs把图划分成分成分层图网络 第二步,dfs多次找增广路 当 ...

  4. 网络流(最大流-Dinic算法)

    摘自https://www.cnblogs.com/SYCstudio/p/7260613.html 网络流定义 在图论中,网络流(Network flow)是指在一个每条边都有容量(Capacity ...

  5. [Poj2112][USACO2003 US OPEN] Optimal Milking [网络流,最大流][Dinic+当前弧优化]

    题意:有K个挤奶机编号1~K,有C只奶牛编号(K+1)~(C+K),每个挤奶机之多能挤M头牛,现在让奶牛走到挤奶机处,求奶牛所走的最长的一条边至少是多少. 题解:从起点向挤奶机连边,容量为M,从挤奶机 ...

  6. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  7. POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流)

    POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流) Description Yo ...

  8. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  9. poj 1459 多源多汇点最大流

    Sample Input 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 ...

随机推荐

  1. 字符设备驱动程序之poll机制(韦大仙)

    明确为什么要引用poll机制? while(1) { read(fd,&key_val,1);//如果没有按键按下,它会一直在等待.现在想做这么一件事情:如果5s后,没有按键按下,它就会返回. ...

  2. Codeforces Round #553 (Div. 2) E 贡献

    https://codeforces.com/contest/1151/problem/E 题意 一条长n的链,每个点上有值\(a[i]\),定义\(f(l,r)\)为该区间的\(值\)所代表的点留下 ...

  3. 生成git的SSH公钥

    1.右键,点击  git bash here 2.安装成功后设置用户和邮箱git config --global user.name "name"git config --glob ...

  4. EF直接更新数据(不需查询)

    //0.0创建修改的 实体对象 Models.BlogArticle model = new BlogArticle(); model.AId = ; model.ATitle = "新的数 ...

  5. Flutter基础系列之混合开发(二)

    1.混合开发的场景 1.1作为独立页面加入 这是以页面级作为独立的模块加入,而不是页面的某个元素. 原生页面可以打开Flutter页面 Flutter页面可以打开原生页面 1.2作为页面的一部分嵌入 ...

  6. ​LeetCode 26:删除排序数组中的重复项 Remove Duplicates from Sorted Array

    给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成. Give ...

  7. 明解C语言 入门篇 第十一章答案

    练习11-1 /* 用指针实现的字符串的改写 */ #include <stdio.h> int main(void) { "; printf("p = \" ...

  8. VMware workstation 12虚拟机安装CentOS7详细安装教程

    虚拟机(Virtual Machine)指通过软件模拟的具有完整硬件系统功能的.运行在一个完全隔离环境中的完整计算机系统. 虚拟系统通过生成现有操作系统的全新虚拟镜像,它具有真实windows系统完全 ...

  9. 第二节: Redis之Set类型和SortedSet类型的介绍和案例应用

    一. Set类型基础 1. 类型说明 1个key→多个value,value的值不重复! Set一种无序且元素内容不重复的集合,不用做重复性判断了,和我们数学中的集合概念相同,可以对多个集合求交集.并 ...

  10. 解锁云原生 AI 技能|在 Kubernetes 上构建机器学习系统

    本系列将利用阿里云容器服务,帮助您上手 Kubeflow Pipelines. 介绍 机器学习的工程复杂度,除了来自于常见的软件开发问题外,还和机器学习数据驱动的特点相关.而这就带来了其工作流程链路更 ...