题目链接

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.
An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6
题意:由n个点构成的图,其中np个点为发电站最大发电量为zi,nc个点为用户最大消耗电量为zj,剩余点为中转点不产电也不消耗电,求此电网最大消耗电量?
 
思路:可将np个发电站看做源点,nc个用户点看做汇点,为了构成单源单汇点,增加一个源点0连向np个发电站,其边权为发电站的最大发电量;增加一个汇点n+1,由所有的用户连向汇点n+1,其边权为用户的最大消耗电量。此时,就变成了单纯的最大流问题。
 
注:第一次写Dinic最大流代码,简单介绍一下Dinic算法:
  EK(EdmondsKarp)最大流的思想为,每次采用bfs搜索找到一条增广路(设流量为flow),改变这条路径上的所有的边权值都减少flow,同时这条路径上的所有反向边权值增加flow,重复直至找不到增广路为止。
  Dinic算法很明显是EK的一个优化算法,其先采用 bfs 将图按深度分层,然后 dfs 找到所有的增广路并同样改变所有的边权值以及反向边的权值,很明显这样dfs贪心的找到所有的增广路并不是最优解,故循环再用bfs重新分层,dfs找增广路,直到bfs分层没有路径能走到汇点,此时即是最大流量了。
 
最大流Dinic代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <queue>
using namespace std;
const int N = ;
const int MAXN = 1e9 + ; struct Edge {
int to;
int value;
int next;
}e[*N*N];
int head[N], cnt;
int deep[N];
int n, np, nc, m; void insert(int u, int v, int value) {
e[++cnt].to = v;
e[cnt].value = value;
e[cnt].next = head[u];
head[u] = cnt;
} void init() {
memset(head, -, sizeof(head));
cnt = -;
} bool BFS() {
memset(deep,-,sizeof(deep));
queue<int> Q;
deep[] = ;
Q.push();
while (!Q.empty()) {
int u = Q.front();
Q.pop();
for (int edge = head[u]; edge != -; edge = e[edge].next) {
int v = e[edge].to;
if (deep[v] == - && e[edge].value > ) {
deep[v] = deep[u] + ;
Q.push(v);
}
}
}
if (deep[n + ] == -) return false;
return true;
} int DFS(int u,int flow_pre) {
if (u == n + ) return flow_pre;
int flow = ;
for (int edge = head[u]; edge != -; edge = e[edge].next) {
int v = e[edge].to;
if (deep[v] != deep[u]+ || e[edge].value==) continue;
int _flow= DFS(v, min(flow_pre, e[edge].value));
flow_pre -= _flow;
flow += _flow;
e[edge].value -= _flow;
e[edge ^ ].value += _flow;
if (flow_pre == ) break;
}
if (flow == ) deep[u] = -;
return flow;
}
int GetMaxFlow() {
int ans = ;
while (BFS()) {
ans += DFS(,MAXN);
}
return ans;
}
int main()
{
while (scanf("%d%d%d%d", &n, &np, &nc, &m) != EOF) {
init();
int u, v, z;
for (int i = ; i < m; i++) {
scanf(" (%d,%d)%d", &u, &v, &z);
insert(u+, v+, z);
insert(v+, u+, );
}
for (int i = ; i < np; i++) {
scanf(" (%d)%d", &u, &z);
insert(, u+, z);
insert(u+, , );
}
for (int i = ; i < nc; i++) {
scanf(" (%d)%d", &u, &z);
insert(u + , n + , z);
insert(n + , u + , );
}
printf("%d\n",GetMaxFlow());
}
}
 

网络流之最大流Dinic --- poj 1459的更多相关文章

  1. 网络流之最大流EK --- poj 1459

    题目链接 本篇博客延续上篇博客(最大流Dinic算法)的内容,此次使用EK算法解决最大流问题. EK算法思想:在图中搜索一条从源点到汇点的扩展路,需要记录这条路径,将这条路径的最大可行流量 liu 增 ...

  2. 网络流之最大流Dinic算法模版

    /* 网络流之最大流Dinic算法模版 */ #include <cstring> #include <cstdio> #include <queue> using ...

  3. 我爱网络流之最大流Dinic

    直接上大佬博客: Dinic算法详解及实现来自小菲进修中 Dinic算法(研究总结,网络流)来自SYCstudio 模板步骤: 第一步,先bfs把图划分成分成分层图网络 第二步,dfs多次找增广路 当 ...

  4. 网络流(最大流-Dinic算法)

    摘自https://www.cnblogs.com/SYCstudio/p/7260613.html 网络流定义 在图论中,网络流(Network flow)是指在一个每条边都有容量(Capacity ...

  5. [Poj2112][USACO2003 US OPEN] Optimal Milking [网络流,最大流][Dinic+当前弧优化]

    题意:有K个挤奶机编号1~K,有C只奶牛编号(K+1)~(C+K),每个挤奶机之多能挤M头牛,现在让奶牛走到挤奶机处,求奶牛所走的最长的一条边至少是多少. 题解:从起点向挤奶机连边,容量为M,从挤奶机 ...

  6. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  7. POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流)

    POJ 2711 Leapin' Lizards / HDU 2732 Leapin' Lizards / BZOJ 1066 [SCOI2007]蜥蜴(网络流,最大流) Description Yo ...

  8. POJ 3436 ACM Computer Factory (网络流,最大流)

    POJ 3436 ACM Computer Factory (网络流,最大流) Description As you know, all the computers used for ACM cont ...

  9. poj 1459 多源多汇点最大流

    Sample Input 2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20 7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 ...

随机推荐

  1. 7.Java基础_Java数据输入

    import java.util.Scanner; public class Output { public static void main(String[] args){ Scanner sc=n ...

  2. 201871010111-刘佳华《面向对象程序设计(java)》第七周学习总结

    201871010111-刘佳华<面向对象程序设计(java)>第七周学习总结 实验时间 2019-10-11 1.实验目的与要求 1) 掌握四种访问权限修饰符的使用特点: (1)进一步理 ...

  3. LG2996 「USACO10NOV」Visiting Cows

    问题描述 LG2996 题解 和没有上司的舞会双倍经验? \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; te ...

  4. VMWare虚拟机提示:另一个程序已锁定文件的一部分,打不开磁盘...模块"Disk"启动失败的解决办法

    重启了电脑之后,打开VMware就发现出现了“锁定文件失败,打不开磁盘......模块"Disk"启动失败.”这些文字 为什么会出现这种问题: 这是因为虚拟机在运行的时候,会锁定文 ...

  5. array 数组

  6. 记 2019蓝桥杯校内预选赛(JAVA组) 赛后总结

    引言 好像博客好久没更新了 哈哈哈哈哈 趁现在有空更新一波 不知道还有没有人看 确实该记录一下每天做了什么了 不然感觉有些浑浑噩噩了 比赛介绍 全称: 蓝桥杯全国软件和信息技术专业人才大赛 蓝桥杯 实 ...

  7. [LeetCode] 84. Largest Rectangle in Histogram 直方图中最大的矩形

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  8. [NewLife.XCode]百亿级性能

    NewLife.XCode是一个有10多年历史的开源数据中间件,支持nfx/netcore,由新生命团队(2002~2019)开发完成并维护至今,以下简称XCode. 整个系列教程会大量结合示例代码和 ...

  9. 从游击队到正规军:马蜂窝旅游网的IM系统架构演进之路

    本文引用自马蜂窝公众号,由马蜂窝技术团队原创分享. 一.引言 今天,越来越多的用户被马蜂窝持续积累的笔记.攻略.嗡嗡等优质的分享内容所吸引,在这里激发了去旅行的热情,同时也拉动了马蜂窝交易的增长.在帮 ...

  10. 安装pip-9.0.1-py2.py3-none-any.whl

    pip的安装 1.从https://pypi.python.org/pypi/pip#downloads下载所需的.whl文件 2.将下载的文件放入Python的根目录 我的根目录是F:\Python ...