http://www.lydsy.com/JudgeOnline/problem.php?id=3674 (题目链接)

题意

  维护并查集3个操作:合并;回到完成第k个操作后的状态;查询。

Solution

  其实就是用主席树的叶子节点维护并查集的可持久化数组fa[]。

细节

  终于认识到了按秩合并的强大,单纯写个路径压缩Re飞,写了路径压缩+按秩合并比单纯的按秩合并没快多少→_→

代码

// bzoj3674
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=200010,maxm=10000010;
struct tree {int ls,rs;}tr[maxm];
int fa[maxm],deep[maxm],rt[maxn],n,m,sz; void build(int &k,int l,int r) {
if (!k) k=++sz;
if (l==r) {fa[k]=l;return;}
int mid=(l+r)>>1;
build(tr[k].ls,l,mid);
build(tr[k].rs,mid+1,r);
}
void update(int &k1,int k2,int l,int r,int x,int val) {
k1=++sz;tr[k1]=tr[k2];
int mid=(l+r)>>1;
if (l==r) {fa[k1]=val,deep[k1]=deep[k2];return;}
if (x<=mid) update(tr[k1].ls,tr[k2].ls,l,mid,x,val);
else update(tr[k1].rs,tr[k2].rs,mid+1,r,x,val);
}
void add(int k,int l,int r,int x) {
if (l==r) {deep[k]++;return;}
int mid=(l+r)>>1;
if (x<=mid) add(tr[k].ls,l,mid,x);
else add(tr[k].rs,mid+1,r,x);
}
int query(int k,int l,int r,int x) {
int mid=(l+r)>>1;
if (l==r) return k;
if (x<=mid) return query(tr[k].ls,l,mid,x);
else return query(tr[k].rs,mid+1,r,x);
}
int find(int k,int x) {
int p=query(k,1,n,x);
if (x==fa[p]) return p;
int t=find(k,fa[p]);
update(k,k,1,n,fa[p],fa[t]);
return t;
}
int main() {
scanf("%d%d",&n,&m);
build(rt[0],1,n);
int ans=0;
for (int op,a,b,i=1;i<=m;i++) {
scanf("%d",&op);
if (op==1) {
rt[i]=rt[i-1];
scanf("%d%d",&a,&b);a^=ans,b^=ans;
int r1=find(rt[i],a),r2=find(rt[i],b);
if (fa[r1]==fa[r2]) continue;
//if (deep[r1]>deep[r2]) swap(r1,r2);
update(rt[i],rt[i-1],1,n,fa[r1],fa[r2]);
//if (deep[r1]==deep[r2]) add(rt[i],1,n,fa[r2]);
}
if (op==2) {scanf("%d",&a);a^=ans;rt[i]=rt[a];}
if (op==3) {
rt[i]=rt[i-1];
scanf("%d%d",&a,&b);
a^=ans,b^=ans;
int r1=find(rt[i],a),r2=find(rt[i],b);
ans=fa[r1]==fa[r2] ? 1 : 0;
printf("%d\n",ans);
}
}
return 0;
}

  

【bzoj3674】 可持久化并查集加强版的更多相关文章

  1. bzoj3673可持久化并查集 by zky&&bzoj3674可持久化并查集加强版

    bzoj3673可持久化并查集 by zky 题意: 维护可以恢复到第k次操作后的并查集. 题解: 用可持久化线段树维护并查集的fa数组和秩(在并查集里的深度),不能路径压缩所以用按秩启发式合并,可以 ...

  2. BZOJ3674: 可持久化并查集加强版

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3674 题解:主要是可持久化的思想.膜拜了一下hzwer的代码后懂了. 其实本质是可持久化fa数 ...

  3. 2019.01.21 bzoj3674: 可持久化并查集加强版(主席树+并查集)

    传送门 题意:维护可持久化并查集,支持在某个版本连边,回到某个版本,在某个版本 询问连通性. 思路: 我们用主席树维护并查集fafafa数组,由于要查询历史版本,因此不能够用路径压缩. 可以考虑另外一 ...

  4. [BZOJ3674]可持久化并查集加强版&[BZOJ3673]可持久化并查集 by zky

    思路: 用主席树维护并查集森林,每次连接时新增结点. 似乎并不需要启发式合并,我随随便便写了一个就跑到了3674第一页?3673是这题的弱化版,本来写个暴力就能过,现在借用加强版的代码(去掉异或),直 ...

  5. BZOJ3674 可持久化并查集加强版 可持久化 并查集

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3674 题意概括 n个集合 m个操作操作:1 a b 合并a,b所在集合2 k 回到第k次操作之后的 ...

  6. 【BZOJ3673/3674】可持久化并查集/可持久化并查集加强版 可持久化线段树

    [BZOJ3674]可持久化并查集加强版 Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了! ...

  7. BZOJ 3674 可持久化并查集加强版(路径压缩版本)

    /* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...

  8. BZOJ 3674 可持久化并查集加强版(按秩合并版本)

    /* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...

  9. 【BZOJ3674】可持久化并查集加强版

    可持久化并查集我觉得就是可持久化数组的一种应用.可持久化数组,顾名思义,就是有历史版本的数组,那么如果我们暴力修改储存的话,修改O(n)查询O(1),空间O(n*m),这样肯定不可行,那么我们发现主席 ...

  10. bzoj3674 可持久化并查集

    我是萌萌的任意门 可持久化并查集的模板题-- 做法好像很多,可以标号法,可以森林法. 本来有O(mloglogn)的神算法(按秩合并+倍增),然而我这种鶸渣就只会写O(mlog2n)的民科算法--再加 ...

随机推荐

  1. nfs客户端报错解决Stale file handle

    NFS故障: 场景:客户端挂载是好的.服务端磁盘满了,重新给挂了一快.客户端df -h nfs挂载消失. 客户端报错:Stale file handle 现象如下: [root@test63-spri ...

  2. java:POI导出excel

    POI是一个开源项目,专用于java平台上操作MS OFFICE,企业应用开发中可用它方便导出Excel. 下面是使用示例: 1.maven中先添加依赖项 <dependency> < ...

  3. Eclipse设置和必装插件

    文章长期更新,主要是记录Eclipse好用的插件和规范的设置 插件篇: 1. StartExplorer. 在Eclipse内定位项目目录,和打开项目目录下的命令行,总是非常麻烦.有了这个插件以后,这 ...

  4. Entity Framework6 with Oracle(可实现code first)

    Oracle 与2个月前刚提供对EF6的支持.以前只支持到EF5.EF6有很多有用的功能 值得升级.这里介绍下如何支持Oracle   一.Oracle 对.net支持的一些基础知识了解介绍. 1.早 ...

  5. Spring IOC 源码浅析

    控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心. 控制反转一般分为两种类型,依赖注入 ...

  6. Expression Blend4经验分享:文字公告无缝循环滚动效果

    这次分享一个类似新闻公告板的无缝循环滚动效果,相信很多项目都会应用到这个效果.之前我也百度了一下,网上的一些Silverlight的文字或图片滚动效果,都是一次性滚动的,如果要做到无缝循环滚动,多数要 ...

  7. GitHub中国区前100名到底是什么样的人?

    本文根据Github公开API,抓取了地址显示China的用户,根据粉丝关注做了一个排名,分析前一百名的用户属性,剖析这些活跃在技术社区的牛人到底是何许人也!后续会根据我的一些经验出品<技术人员 ...

  8. denounce函数:Javascript中如何应对高频触发事件

    在DOM Event的世界中,以scroll.resize.mouseover等为代表的高频触发事件显得有些与众不同.通常,DOM事件只有在明确的时间点才会被触发,比如被点击,比如XMLHttpReq ...

  9. C#访问Azure的资源

    官方参考资料在这里:https://msdn.microsoft.com/en-us/library/azure/dn722415.aspx,本文放一些重点及遇到的坑的解决办法. 身份验证 不是说,我 ...

  10. nios II--实验4——按键中断软件部分

    软件开发 首先,在硬件工程文件夹里面新建一个software的文件夹用于放置软件部分:打开toolsàNios II 11.0 Software Build Tools for Eclipse,需要进 ...