Transportation

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2301    Accepted Submission(s): 966

Problem Description
There are N cities, and M directed roads connecting them. Now you want to transport K units of goods from city 1 to city N. There are many robbers on the road, so you must be very careful. The more goods you carry, the more dangerous it is. To be more specific, for each road i, there is a coefficient ai. If you want to carry x units of goods along this road, you should pay ai * x2 dollars to hire guards to protect your goods. And what’s worse, for each road i, there is an upper bound Ci, which means that you cannot transport more than Ci units of goods along this road. Please note you can only carry integral unit of goods along each road.
You should find out the minimum cost to transport all the goods safely. 
 
Input
There are several test cases. The first line of each case contains three integers, N, M and K. (1 <= N <= 100, 1 <= M <= 5000, 0 <= K <= 100). Then M lines followed, each contains four integers (ui, vi, ai, Ci), indicating there is a directed road from city ui to vi, whose coefficient is ai and upper bound is Ci. (1 <= ui, vi <= N, 0 < ai <= 100, Ci <= 5)
 
Output
Output one line for each test case, indicating the minimum cost. If it is impossible to transport all the K units of goods, output -1.

 
Sample Input
2 1 2
1 2 1 2
2 1 2
1 2 1 1
2 2 2
1 2 1 2
1 2 2 2
 
Sample Output
4
-1
3
这题的重点是拆边,虽然之前没见过拆边的题目,但是这提这么简单的思路我竟然没想到,还是该给自己一个大耳光
 
 #include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<climits>
#define MAXP 110
#define MAXE 51000
using namespace std;
struct Edge
{
int s,t,f,c,next;
} edge[MAXE];
int head[MAXP];
int pre[MAXP];
int dist[MAXP];
bool isq[MAXP];
int n,m,k,s,t,u,v,c,f,ent;
void add(int S,int T,int f,int c)
{
edge[ent].s=S;
edge[ent].t=T;
edge[ent].f=f;
edge[ent].c=c;
edge[ent].next=head[S];
head[S]=ent++;
edge[ent].s=T;
edge[ent].t=S;
edge[ent].f=;
edge[ent].c=-c;
edge[ent].next=head[T];
head[T]=ent++;
}
int MIN(int a,int b)
{
return a<b?a:b;
}
bool spfa()
{
memset(pre,-,sizeof(pre));//初始化路径为-1
for(int i=s; i<=t; i++)
{
isq[i]=false;//每点开始时均不在队列里面
dist[i]=INT_MAX;//初始化到每点的最小费用均为INT_MAX
}
queue<int>q;
q.push(s);
isq[s]=true;//源点s已经放入到队列里面去了
dist[s]=;//从源点到源点的距离为0
while(!q.empty())//当队列为空时优化过程结束,退出循环
{
int temp1=q.front();
q.pop();
isq[temp1]=false;//该点已经退出队列
for(int i=head[temp1]; i!=-; i=edge[i].next) //从该点找通过邻接表找所有的以该点为起点的边,从中找出能优化的点
{
int temp2=edge[i].t;
if(edge[i].f&&dist[temp2]>dist[temp1]+edge[i].c)
{
dist[temp2]=dist[temp1]+edge[i].c;
pre[temp2]=i;
if(!isq[temp2])//如果该点不在队列中,则将该点放入队列中
{
q.push(temp2);
isq[temp2]=true;
}
}
}
}
return pre[t]!=-;//如果pre[t]==-1的话说明没有找到从s到t的路径,即已经找到所有的路径了,结束循环
}
void mcmf()
{
int tot=;
int sum=;
int mincost=INT_MAX;
int minn=INT_MAX;
while(spfa())
{
tot++;
mincost=dist[t];
sum+=mincost;
if(tot==k)
{
printf("%d\n",sum);
return;
}
for(int i=pre[t];i!=-;i=pre[i])//最小费用最大流中的减流的过程
{
edge[i].f--;
edge[i^].f++;
i=edge[i].s;
}
}
printf("-1\n");
}
int main()
{
while(~scanf("%d%d%d",&n,&m,&k))
{
ent=;
memset(head,-,sizeof(head));
s=;t=n;
for(int i=;i<=m;i++)
{
scanf("%d%d%d%d",&u,&v,&c,&f);
for(int j=;j<=f;j++)
add(u,v,,(j*-)*c);
}
if(m==||n==)
{
printf("0\n");
continue;
}
mcmf();
}
return ;
}

hdu 3667 拆边加最小费用流的更多相关文章

  1. hdu 3667 (拆边 mcmf)

    注意题目中 边的容量 <= 5.可以把费用权值 a *f ^2化归成 a * f2, 即第一条边费用为 1 * a, 第二条 为 (4 - 1) * a, 第三条为 (9  - 4) * a.. ...

  2. HDU 3667 Transportation(网络流之费用流)

    题目地址:HDU 3667 这题的建图真是巧妙...为了保证流量正好达到k.须要让每一次增广到的流量都是1,这就须要把每一条边的流量都是1才行.可是每条边的流量并非1,该怎么办呢.这个时候能够拆边,反 ...

  3. hdu 3667(拆边+最小费用最大流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...

  4. HDU 3667.Transportation 最小费用流

    Transportation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. HDU 3667 费用流(拆边)

    题意:有n个城市(1~n),m条有向边:有k件货物要从1运到n,每条边最多能运c件货物,每条边有一个危险系数ai,经过这条路的费用需要ai*x2(x为货物的数量),问所有货物安全到达的费用. 思路:c ...

  6. hdu 3667(最小费用最大流+拆边)

    Transportation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  7. HDU 3667 费用流 拆边 Transportation

    题意: 有N个城市,M条有向道路,要从1号城市运送K个货物到N号城市. 每条有向道路<u, v>运送费用和运送量的平方成正比,系数为ai 而且每条路最多运送Ci个货物,求最小费用. 分析: ...

  8. hdu 4004 (二分加贪心) 青蛙过河

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4004 题目意思是青蛙要过河,现在给你河的宽度,河中石头的个数(青蛙要从石头上跳过河,这些石头都是在垂 ...

  9. HDU 3667

    http://acm.hdu.edu.cn/showproblem.php?pid=3667 最小费用最大流 本题流量和费用不是线性关系,fee=a*flow*flow,所以常规套模板spfa无法得到 ...

随机推荐

  1. CommandExtra.lua --游戏命令扩展

    --[[作者信息: Command Extra (游戏命令扩展) 作者QQ:247321453 作者Email:247321453@qq.com 修改日期:2014-3-12 功能:添加额外的命令.G ...

  2. centos7+nginx 1.9.0+php-fpm+phpstorm+xdebug+vmware开发环境搭建

    1.php-fpm yum install php-fpm 默认配置在本地9000端口监听 service php-fpm restart启动 2.nginx 1.9.0 需先安装gcc zlib o ...

  3. 029. aps.net中DataView中详细信息的跳转显示

    点击当前页面的连接, 跳转到另一个页面, 然后进行更新删除等一系列操作 主要代码: <%@ Page Language="C#" AutoEventWireup=" ...

  4. Storm简介

    Storm特性 1. 低延迟和高性能 在一个小集群中,每个节点每秒可以处理数以百万计的消息. 2. 可扩展 在Storm集群中主要有三个实体:工作进程.线程和任务.Storm集群中每台机器上都可以运行 ...

  5. 利用freemarker 静态化网页

    1.介绍-FreeMarker是什么 模板引擎:一种基于模板的.用来生成输出文本的通用工具 基于Java的开发包和类库 2.介绍-FreeMarker能做什么 MVC框架中的View层组件 Html页 ...

  6. [Spring MVC] - Annotation验证

    使用Spring MVC的Annotation验证可以直接对view model的简单数据验证,注意,这里是简单的,如果model的数据验证需要有一些比较复杂的业务逻辑性在里头,只是使用annotat ...

  7. PHP编译过程中常见错误信息的解决方法

    在CentOS编译PHP5的时候有时会遇到以下的一些错误信息,基本上都可以通过yum安装相应的库来解决.以下是具体的一些解决办法: checking for BZip2 support… yes ch ...

  8. (Design Pattern) Singleton.

    Role: The purpose of the Singleton pattern is to ensure that there is only one instance of a class, ...

  9. linux命令行与shell脚本编程大全---更多bash shell命令

    进程状态:0代表正在运行:S代表在休眠:R代表可运行,正等待运行:Z代表僵化,进程已经结束但父进程已不存在:T代表停止. 查看有那些进程运行:ps  -ef 基本的linux文件系统: 1.ext文件 ...

  10. C预处理和C库

    #include <stdio.h> #define MAN(x) "n"##x int main(void) { printf("%s",MAN( ...