Distance Queries
Time Limit: 2000MS   Memory Limit: 30000K
Total Submissions: 12846   Accepted: 4552
Case Time Limit: 1000MS

Description

Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible!

Input

* Lines 1..1+M: Same format as "Navigation Nightmare"

* Line 2+M: A single integer, K. 1 <= K <= 10,000

* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.

Output

* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance.

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6

Sample Output

13
3
36

Hint

Farms 2 and 6 are 20+3+13=36 apart. 

题目连接:POJ 1986

简单模版题,一棵树中两点的距离$d(u,v)$可以用$d[u]+d[v]-2*d[lca(u,v)]$来求得,其中$d_i$是你设定的根到某一点$i$的距离,那显然首先随便找个点进行最短路或者直接DFS获得d数组,再Tarjan得出答案

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=40010;
struct edge
{
int to;
int nxt;
int w;
};
struct query
{
int to;
int nxt;
int id;
}; edge E[N<<1];
query Q[N<<1];
int head[N],rhead[N],tot,rtot;
int d[N],dx[N],vis[N],in[N];
int pre[N],ances[N]; void init()
{
CLR(head,-1);
CLR(rhead,-1);
tot=rtot=0;
CLR(d,0);
for (int i=0; i<N; ++i)
{
pre[i]=i;
ances[i]=0;
}
CLR(vis,0);
CLR(in,0);
CLR(dx,0);
}
int Find(int n)
{
if(pre[n]==n)
return n;
return pre[n]=Find(pre[n]);
}
inline void add(int s,int t,int d)
{
E[tot].to=t;
E[tot].w=d;
E[tot].nxt=head[s];
head[s]=tot++;
}
inline void addquery(int s,int t,int id)
{
Q[rtot].id=id;
Q[rtot].to=t;
Q[rtot].nxt=rhead[s];
rhead[s]=rtot++;
}
void LCA(int u)
{
vis[u]=1;
ances[u]=u;
int i,v;
for (i=head[u]; ~i; i = E[i].nxt)
{
v = E[i].to;
if(!vis[v])
{
LCA(v);
pre[v]=u;
ances[Find(u)]=u;
}
}
for (i=rhead[u]; ~i; i = Q[i].nxt)
{
v=Q[i].to;
if(vis[v])
dx[Q[i].id]=d[u]+d[v]-(d[ances[Find(v)]]<<1);
}
}
void dfs(int u,int fa,int sum)
{
d[u]=sum;
for (int i=head[u]; ~i; i = E[i].nxt)
{
int v=E[i].to;
if(v!=fa)
dfs(v,u,sum+E[i].w);
}
}
int main(void)
{
int n,m,a,b,c,i,k;
char nouse[5];
while (~scanf("%d%d",&n,&m))
{
init();
for (i=0; i<m; ++i)
{
scanf("%d%d%d%s",&a,&b,&c,nouse);
add(a,b,c);
add(b,a,c);
++in[b];
}
scanf("%d",&k);
for (i=0; i<k; ++i)
{
scanf("%d%d",&a,&b);
addquery(a,b,i);
addquery(b,a,i);
}
for (i=1; i<=n; ++i)
{
if(!in[i])
{
dfs(i,-1,0);
LCA(i);
break;
}
}
for (i=0; i<k; ++i)
printf("%d\n",dx[i]);
}
return 0;
}

POJ 1986 Distance Queries(Tarjan离线法求LCA)的更多相关文章

  1. POJ - 1986 Distance Queries(离线Tarjan算法)

    1.一颗树中,给出a,b,求最近的距离.(我没考虑不联通的情况,即不是一颗树的情况) 2.用最近公共祖先来求, 记下根结点到任意一点的距离dis[],这样ans = dis[u] + dis[v] - ...

  2. POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)

    POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...

  3. POJ.1986 Distance Queries ( LCA 倍增 )

    POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...

  4. POJ 1986 Distance Queries LCA两点距离树

    标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + d ...

  5. POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】

    任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total ...

  6. POJ 1986 Distance Queries(LCA Tarjan法)

    Distance Queries [题目链接]Distance Queries [题目类型]LCA Tarjan法 &题意: 输入n和m,表示n个点m条边,下面m行是边的信息,两端点和权,后面 ...

  7. POJ 1986 Distance Queries (Tarjan算法求最近公共祖先)

    题目链接 Description Farmer John's cows refused to run in his marathon since he chose a path much too lo ...

  8. POJ 1986 Distance Queries (最近公共祖先,tarjan)

    本题目输入格式同1984,这里的数据范围坑死我了!!!1984上的题目说边数m的范围40000,因为双向边,我开了80000+的大小,却RE.后来果断尝试下开了400000的大小,AC.题意:给出n个 ...

  9. poj 1986 Distance Queries LCA

    题目链接:http://poj.org/problem?id=1986 Farmer John's cows refused to run in his marathon since he chose ...

随机推荐

  1. 快学Java NIO

    Java NIO Tutorial 地址:http://tutorials.jenkov.com/java-nio/index.html Java NIO系列教程译文地址:http://ifeve.c ...

  2. HDU5816 Hearthstone(状压DP)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5816 Description Hearthstone is an online collec ...

  3. POJ1815 Friendship(字典序最小最小割割边集)

    看了题解.当时也觉得用邻接矩阵挺好写的,直接memset:然而邻接矩阵不懂得改,于是就放开那个模板,写了Dinic.. 方法是,按字典序枚举每一条满流的边,然后令其容量减1,如果最大流改变了,这条边就 ...

  4. oracle 授权

    1.授权oss01用户,此用户可以执行sys.utl_i18n存储过程. grant execute on sys.utl_i18n to oss01;grant execute on sys.dbm ...

  5. Zookeeper 分布式环境搭建

    一.前期环境 安装概览 IP Host Name     Software     192.168.23.128     ae01 JDK 1.7 192.168.23.129 ae02 JDK 1. ...

  6. JAVA StringBuilder StringBuffer String比较

    字符串连接时的效率: StringBuilder>StringBuffer>String 区别: StringBuilder效率最高,但是不是线程安全的,适用于单线程.多线程用String ...

  7. 【SAP BO】【WEBI】【转】Webi实现动态选择度量

    我们都知道Web Intelligence具有高级的分析功能,是一个非常灵活的报表工具.在这篇文章里,我会演示一个使用Webi实现动态选择度量对象的方案.首先解释一下什么是”动态选择度量”:例如我们有 ...

  8. django 后台管理

    修改 admin.py from myapp.models import * from django.contrib import admin # Register your models here. ...

  9. nodejs express template (模版)的使用 (ejs + express)

    var app=require("express").createServer(); app.set("view engine","ejs" ...

  10. 种树 & 乱搞

    题意: 在一个(n+1)*(m+1)的网格点上种k棵树,树必须成一条直线,相邻两棵树距离不少于D,求方案数. SOL: 这题吧...巨坑无比,本来我的思路是枚举每一个从(0,0)到(i,j)的矩形,然 ...