降噪自动编码器(Denoising Autoencoder)
起源:PCA、特征提取....
随着一些奇怪的高维数据出现,比如图像、语音,传统的统计学-机器学习方法遇到了前所未有的挑战。
数据维度过高,数据单调,噪声分布广,传统方法的“数值游戏”很难奏效。数据挖掘?已然挖不出有用的东西。
为了解决高维度的问题,出现的线性学习的PCA降维方法,PCA的数学理论确实无懈可击,但是却只对线性数据效果比较好。
于是,寻求简单的、自动的、智能的特征提取方法仍然是机器学习的研究重点。比如LeCun在1998年CNN总结性论文中就概括了今后机器学习模型的基本架构。

当然CNN另辟蹊径,利用卷积、降采样两大手段从信号数据的特点上很好的提取出了特征。对于一般非信号数据,该怎么办呢??
Part I 自动编码器(AutoEncoder)
自动编码器基于这样一个事实:原始input(设为x)经过加权(W、b)、映射(Sigmoid)之后得到y,再对y反向加权映射回来成为z。
通过反复迭代训练两组(W、b),使得误差函数最小,即尽可能保证z近似于x,即完美重构了x。
那么可以说正向第一组权(W、b)是成功的,很好的学习了input中的关键特征,不然也不会重构得如此完美。结构图如下:

从生物的大脑角度考虑,可以这么理解,学习和重构就好像编码和解码一样。

这个过程很有趣,首先,它没有使用数据标签来计算误差update参数,所以是无监督学习。
其次,利用类似神经网络的双隐层的方式,简单粗暴地提取了样本的特征。
这个双隐层是有争议的,最初的编码器确实使用了两组(W,b),但是Vincent在2010年的论文中做了研究,发现只要单组W就可以了。
即W'=WT, W和W’称为Tied Weights。实验证明,W'真的只是在打酱油,完全没有必要去做训练。
逆向重构矩阵让人想起了逆矩阵,若W-1=WT的话,W就是个正交矩阵了,即W是可以训成近似正交阵的。
由于W'就是个酱油,训练完之后就没它事了。正向传播用W即可,相当于为input预先编个码,再导入到下一layer去。所以叫自动编码器,而不叫自动编码解码器。
Part II 降噪自动编码器(Denoising Autoencoder)
Vincent在2008年的论文中提出了AutoEncoder的改良版——dA。推荐首先去看这篇paper。
论文的标题叫 "Extracting and Composing Robust Features",译成中文就是"提取、编码出具有鲁棒性的特征"
怎么才能使特征很鲁棒呢?就是以一定概率分布(通常使用二项分布)去擦除原始input矩阵,即每个值都随机置0, 这样看起来部分数据的部分特征是丢失了。
以这丢失的数据x'去计算y,计算z,并将z与原始x做误差迭代,这样,网络就学习了这个破损(原文叫Corruputed)的数据。
这个破损的数据是很有用的,原因有二:
其之一,通过与非破损数据训练的对比,破损数据训练出来的Weight噪声比较小。降噪因此得名。
原因不难理解,因为擦除的时候不小心把输入噪声给×掉了。

其之二,破损数据一定程度上减轻了训练数据与测试数据的代沟。由于数据的部分被×掉了,因而这破损数据
一定程度上比较接近测试数据。(训练、测试肯定有同有异,当然我们要求同舍异)。
这样训练出来的Weight的鲁棒性就提高了。图示如下:

关键是,这样胡乱擦除原始input真的很科学?真的没问题? Vincent又从大脑认知角度给了解释:

paper中这么说到:人类具有认知被阻挡的破损图像能力,此源于我们高等的联想记忆感受机能。
我们能以多种形式去记忆(比如图像、声音,甚至如上图的词根记忆法),所以即便是数据破损丢失,我们也能回想起来。
另外,就是从特征提取的流形学习(Manifold Learning)角度看:

破损的数据相当于一个简化的PCA,把特征做一个简单的降维预提取。
Part III 自动编码器的奇怪用法
自动编码器相当于创建了一个隐层,一个简单想法就是加在深度网络的开头,作为原始信号的初级filter,起到降维、提取特征的效果。
关于自动编码器取代PCA的基本用法,参考 http://www.360doc.com/content/15/0324/08/20625606_457576675.shtml
当然Bengio在2007年论文中仿照DBN较之于RBM做法:作为深度网络中各个layer的参数初始化值,而不是用随机小值。
即变成了Stacked AutoEncoder。
当然,这种做法就有一个问题,AutoEncoder可以看作是PCA的非线性补丁加强版,PCA的取得的效果是建立在降维基础上的。
仔细想想CNN这种结构,随着layer的推进,每层的神经元个数在递增,如果用了AutoEncoder去预训练,岂不是增维了?真的没问题?
paper中给出的实验结果认为AutoEncoder的增维效果还不赖,原因可能是非线性网络能力很强,尽管神经元个数增多,但是每个神经元的效果在衰减。
同时,随机梯度算法给了后续监督学习一个良好的开端。整体上,增维是利大于弊的。
Part IV 代码与实现
具体参考 http://deeplearning.net/tutorial/dA.html
有几个注意点说下:
①cost函数可以使用交错熵(Cross Entroy)设计,对于定义域在[0,1]这类的数据,交错熵可用来设计cost函数。
其中Logistic回归的似然函数求导结果可看作是交错熵的特例。参考 http://en.wikipedia.org/wiki/Cross_entropy
也可以使用最小二乘法设计。
②RandomStreams函数存在多个,因为要与非Tensor量相乘,必须用shared版本。
所以是 from theano.tensor.shared_randomstreams import RandomStreams
而不是 from theano.tensor import RandomStreams
降噪自动编码器(Denoising Autoencoder)的更多相关文章
- 基于theano的降噪自动编码器(Denoising Autoencoders--DA)
1.自动编码器 自动编码器首先通过下面的映射,把输入 $x\in[0,1]^{d}$映射到一个隐层 $y\in[0,1]^{d^{'}}$(编码器): $y=s(Wx+b)$ 其中 $s$ 是非线性的 ...
- theano学习指南5(翻译)- 降噪自动编码器
降噪自动编码器是经典的自动编码器的一种扩展,它最初被当作深度网络的一个模块使用 [Vincent08].这篇指南中,我们首先也简单的讨论一下自动编码器. 自动编码器 文献[Bengio09] 给出了自 ...
- 堆叠式降噪自动编码器(SDA)
1.1 自动编码器 自动编码器(AutoEncoder,AE)就是一种尽可能复现输入信号的神经网络,其输出向量与输入向量同维,常按照输入向量的某种形式,通过隐层学习一个数据的表示或对原始数据进行有效 ...
- denoising autoencoder
神经网络的挑战和关键技术: 1.神经网络结构决定(层,神经元,连接) 加入特定领域的知识(CNN 图片处理) 2.模型复杂度高 大的数据量: regularization: dro ...
- TensorFlow 实现深度神经网络 —— Denoising Autoencoder
完整代码请见 models/DenoisingAutoencoder.py at master · tensorflow/models · GitHub: 1. Denoising Autoencod ...
- 栈式自动编码器(Stacked AutoEncoder)
起源:自动编码器 单自动编码器,充其量也就是个强化补丁版PCA,只用一次好不过瘾. 于是Bengio等人在2007年的 Greedy Layer-Wise Training of Deep Netw ...
- 9.1、AutoEncoder自动编码器[转]
如果给定一个神经网络,我们假设其输出与输入是相同的,然后训练调整其参数,得到每一层中的权重.自然地,我们就得到了输入I的几种不同表示(每一层代表一种表示),这些表示就是特征.自动编码器就是一种尽可能复 ...
- 堆叠降噪自编码器SDAE
https://blog.csdn.net/satlihui/article/details/81006906 https://blog.csdn.net/github_39611196/articl ...
- Theano3.7-练习之堆叠消噪自动编码器
来自:http://deeplearning.net/tutorial/SdA.html#sda Stacked Denoising Autoencoders (SdA) note:这部分需要读者读过 ...
随机推荐
- nginx 配一个简单的静态文件服务器 和一个虚似机
下面是个图片服务器: server { listen ; server_name img.xxx.xxx.com; root /data/site/img.xxx.xxx.com; access_lo ...
- .netWeb方向:语言+技术
常用语言+技术 C# T-Sql ADO.NEt JavaScript Asp.Net MVC HTML CSS DOM AJAX Entity Framework Regular expressio ...
- Servlet中的GET和POST之间的区别
自己的感悟: get和post这是http协议的两种方法,另外还有head, delete等 这两种方法有本质的区别,get只有一个流,参数附加在url后,大小个数有严格限制且只能是字符串.post的 ...
- 使用MulticastSocket实现多点广播
原文链接:http://hbiao68.iteye.com/blog/1943354 使用MulticastSocket实现多点广播 DatagramSocket只允许数据报发送给指定的目标地址,而M ...
- LayoutInflater(四)
如果说要按类型来划分的话,自定义View的实现方式大概可以分为三种,自绘控件.组合控件.以及继承控件.那么下面我们就来依次学习一下,每种方式分别是如何自定义View的. 一.自绘控件 自绘控件的意思就 ...
- 对于c语言int类型和float,以及double类型表示范围的计算
首先说一下我原来错误的认识 int是32个bit, 如果我们把第一位理解为符号位,那么很显然int的范围是-(2^31-1)~2^31-1 但是实际上我们都知道int的最小值是-2^31次.. 为什么 ...
- $(function(){})与window.onload的区别
不太一样window.onload是在页面所有的元素都加载完成后才触发$(function(){})是在页面的dom结构加载完毕后就触发 dom里的内容不一定都已经加载完成比如说一个页面有好多图片 而 ...
- 【转】ADO.NET中的五个主要对象
Connection 物件 Connection 对象主要是开启程序和数据库之间的连结.没有利用连结对象将数据库打开,是无法从数据库中取得数据的.这个物件在ADO.NET 的最底层,我们可以自己 ...
- EL表达式详解及应用实例
1. EL是JSP内置的表达式语言! * jsp2.0开始,不让再使用java脚本,而是使用el表达式和动态标签来替代java脚本! * EL替代的是<%= ... %>,也就是说,EL只 ...
- 【maven】 pom.xml内容没有错,但一直报错红叉 解决办法
1.首先看一下下面的这两个项目,一个是新建的,一个是原来的老项目 2.myEcplise中是点击如下图 Maven4MyEcplise, Ecplise中也是右键,只不过点击Mavene而已,两个一样 ...