【BZOJ】2242: [SDOI2011]计算器
http://www.lydsy.com/JudgeOnline/problem.php?id=2242
题意:(前两个问略...)第三个问是,求$a^x \equiv b \pmod{p}$最小的$x$,或者输出无解,它们范围都是$10^9$哒= =
#include <bits/stdc++.h>
using namespace std; typedef long long ll;
int mpow(ll a, ll b, ll p) {
ll r=1; a%=p;
while(b) { if(b&1) r=((ll)r*a)%p; a=((ll)a*a)%p; b>>=1; }
return r;
}
void gcd(ll a, ll b, ll &d, ll &x, ll &y) {
if(!b) { d=a; x=1; y=0; return; }
gcd(b, a%b, d, y, x); y-=a/b*x;
}
void ni(ll a, ll b, ll p) {
ll d, x, y, t;
gcd(a, p, d, x, y); if(b%d) { puts("Orz, I cannot find x!"); return; }
t=p/d;
while(x<0) x+=t;
while(x>=t) x-=t;
printf("%lld\n", (x*b)%p);
}
map<int, int> s;
void bsgs(ll y, ll z, ll p) {
y%=p; z%=p;
if(z==1) { puts("0"); return; }
if(!y && !z) { puts("1"); return; }
if(!y) { puts("Orz, I cannot find x!"); return; }
s.clear();
int m=sqrt(p+0.5), t=1, w=y;
for(int i=0; i<m; ++i) s[((ll)z*t)%p]=i, t=((ll)t*w)%p;
w=mpow(y, m, p); y=1; t=(p-1)/m+1; bool flag=1;
for(int i=0; i<=t; ++i) if(s.count(y)) { printf("%lld\n", (ll)m*i-s[y]); flag=0; break; } else y=((ll)y*w)%p;
if(flag) puts("Orz, I cannot find x!");
}
int main() {
int z, y, p, c, T;
scanf("%d%d", &T, &c);
while(T--) {
scanf("%d%d%d", &y, &z, &p);
if(c==1) printf("%d\n", mpow(y, z, p));
else if(c==2) ni(y, z, p);
else bsgs(y, z, p);
}
return 0;
}
bsgs裸题....其实就是一种分块思想..(为啥有那么牛的名字呢= =其实是我不想加分类了= =)即小块暴力然后大块就解决的思想,相信你们都能秒懂= =
要求
$$a^x \equiv b \pmod{p}$$
的最小的$x$,那么
首先我们随便选一个$m$,使得$x=km-t, 0<=t<m$,(这虽然有点区别于取余,但是这是为了方便= =)
然后推得
$$a^{km} \equiv ba^t \pmod{p}$$
然后就是右边暴力预处理,左边枚举$k$...由于枚举$k$复杂度是$O(n/m)$,显然取$m=\sqrt{n}$最优= =...由于懒,开个set记录右边= =于是总复杂度是$O(\sqrt{n}log(\sqrt{n}))$
哦最后忘记一件事= =要特判啊= =比如说$b=1$显然$x=0$啊,而且取模了$a, b$后注意特判$a=0$的情况啊= =关于一些情况没特判的同学= =我要hack你们...比如数据
1 3
4 1 2
【BZOJ】2242: [SDOI2011]计算器的更多相关文章
- bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...
- BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )
没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...
- BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]
2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...
- bzoj 2242 [SDOI2011]计算器(数论知识)
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...
- BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)
同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...
- BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2242 [题目大意] 给出T和K 对于K=1,计算 Y^Z Mod P 的值 对于K=2 ...
- bzoj 2242 [SDOI2011]计算器——BSGS模板
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2242 第一道BSGS! 咳咳,我到底改了些什么?…… 感觉和自己的第一版写的差不多……可能是 ...
- BZOJ 2242 [SDOI2011]计算器 BSGS+高速幂+EXGCD
题意:id=2242">链接 方法: BSGS+高速幂+EXGCD 解析: BSGS- 题解同上.. 代码: #include <cmath> #include <c ...
- bzoj 2242: [SDOI2011]计算器
#include<cstdio> #include<iostream> #include<map> #include<cmath> #define ll ...
- [原博客] BZOJ 2242 [SDOI2011] 计算器
题目链接 noip级数论模版题了吧.让求三个东西: 给定y,z,p,计算`Y^Z Mod P` 的值. 给定y,z,p,计算满足`xy≡ Z ( mod P )`的最小非负整数. 给定y,z,p,计算 ...
随机推荐
- 全局压缩http响应头
见代码: public class CompressAttribute : ActionFilterAttribute { public override void OnActionExecuting ...
- My97DatePicker使用技巧
My97DatePicker使用是很常用的控件,总结一下常用使用技巧: 1.onpicked是事件,也就选择日期之后触发事件: 2.isShowClear:是否显示清理按钮: 3.maxDate:最大 ...
- SQL语法中的JOIN类型
这个要弄明白哟..CROSS JOIN, NATURAL, INNER JOIN ,LEFT OUTER JOIN(LEFT JOIN) 等等....带LEFT,RIGHT的必为OUTER,所以OUT ...
- 在 Mac 上安装 sbt
通过第三方的包安装 注意: 第三方的包可能没有提供最新的版本,请记得将任何问题反馈给这些包相关的维护者. 通过 Macports 安装 $ port install sbt 通过 Homebrew 安 ...
- angularJS 二
angularJS 2.1 ngForm <!DOCTYPE html> <html lang="zh-cn" ng-app> <head> ...
- html5 三角形
html5 三角形 <!DOCTYPE html> <html> <head lang="en"> <meta charset=" ...
- android 入门-动画与容器
set 动画容器 可作为资源id添加R.anim.xxxx 可用于在样式表中添加 http://blog.csdn.net/liuhe688/article/details/6660823 in ...
- 修改Apache配置文件开启gzip压缩传输
转自:http://down.chinaz.com/server/201202/1645_1.htm 最近无事研究一些Web的优化,用工具page speed检测网站时发现还没有开启gzip压缩,于是 ...
- Javascript实现时钟
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- loj 1337
题目链接:http://lightoj.com/volume_showproblem.php?problem=1337 思路:对于搜过的区域进行标记,如果要求的点落在已经搜过的区域,那么直接取出来即可 ...