【HDU】2138 How many prime numbers
http://acm.hdu.edu.cn/showproblem.php?pid=2138
题意:给n个数判断有几个素数。(每个数<=2^32)
#include <cstdio>
using namespace std;
typedef long long ll;
ll ipow(ll a, ll b, ll m) { ll x=1; for(; b; b>>=1, (a*=a)%=m) if(b&1) (x*=a)%=m; return x; }
ll rand(ll a, ll b) {
static const ll M=1e9+7, g=154865266;
static ll now=1283901ll;
return a+((now*=g)%=M)%(b-a+1);
}
bool check(ll x) {
if(x==2 || x==3 || x==5 || x==7 || x==11 || x==13) return 1;
if(x<2 || (x&1)==0 || (x%3)==0 || (x%5)==0 || (x%7)==0 || (x%11)==0 || (x%13)==0) return 0;
int cnt=0;
ll d=x-1; while((d&1)==0) d>>=1, ++cnt;
for(int T=1; T<=50; ++T) {
int a=rand(2, x-1);
ll t=ipow(a, d, x), pre;
for(int i=1; i<=cnt; ++i) { pre=t; (t*=t)%=x; if(t==1 && pre!=1 && pre!=x-1) return 0; }
if(t!=1) return 0;
}
return 1;
}
int main() {
int n;
while(~scanf("%d", &n)) {
int ans=0;
for(int i=1; i<=n; ++i) { int a; scanf("%d", &a); if(check(a)) ++ans; }
printf("%d\n", ans);
}
return 0;
}
学习了素数检测= =Miller-Rabin...复杂度$O(k log^3 n)$,k是选的$a$的个数
其实基于两个定理:费马小定理和二次探测...
首先如果$n$是奇素数,那么显然对于所有的$1 \le a < n$,都有$a^{(n-1)} \equiv 1 \pmod{n}$,那么我们马上可以得到一个暴力算法= =(比枚举约数还慢系列= =
然后用那啥二次探测定理然后随机选一些$a$然后一定概率来检测$n$= =(听说单次检测是$3/4$的概率= =那么多次检测成功率很高= =$n$次的能检测出来的概率就是$1 - \left( \frac{1}{4} \right) ^n$
二项探测就是指如果$n$是素数,则$x^2 \equiv 1 \pmod{n}, 0<=x<n$的只有就是$x = 1 或 x = n-1$
证明:容易得到$p | (x+1)(x-1)$。而由于$p$是质数,所以$(x+1)$和$(x-1)$中至少一个被$p$整除。那么容易得到$x = \pm 1$,即$x \equiv 1 或 x \equiv n-1$
然后我们就将$n-1$分解成$2^sd$其中$d$为奇数。这样我们从$a^d$开始向上算,每一次平方一次,如果等于$1$而上一次却不等于$\pm 1$,那么为合数。
【HDU】2138 How many prime numbers的更多相关文章
- 【HDU】2866:Special Prime【数论】
Special Prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- 【POJ2739】Sum of Consecutive Prime Numbers
简单的素数打表,然后枚举.开始没注意n读到0结束,TLE了回..下次再认真点.A过后讨论里面有个暴力打表过的,给跪了! #include <iostream> #include <c ...
- 【HDU】4888 Redraw Beautiful Drawings 网络流【推断解是否唯一】
传送门:pid=4888">[HDU]4888 Redraw Beautiful Drawings 题目分析: 比赛的时候看出是个网络流,可是没有敲出来.各种反面样例推倒自己(究其原因 ...
- 【LeetCode】201. Bitwise AND of Numbers Range 解题报告(Python)
[LeetCode]201. Bitwise AND of Numbers Range 解题报告(Python) 标签: LeetCode 题目地址:https://leetcode.com/prob ...
- HDU 2138 How many prime numbers(Miller_Rabin法判断素数 【*模板】 用到了快速幂算法 )
How many prime numbers Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- HDOJ(HDU) 2138 How many prime numbers(素数-快速筛选没用上、)
Problem Description Give you a lot of positive integers, just to find out how many prime numbers the ...
- 【HDU】2191 多重背包问题
原题目:悼念512汶川大地震遇难同胞——珍惜现在,感恩生活 [算法]多重背包(有限背包) 动态规划 [题解]http://blog.csdn.net/acdreamers/article/detail ...
- 【HDU】6110 路径交(2017百度之星) 线段树+RMQ-LCA+树链的交
[题目]2017"百度之星"程序设计大赛 - 初赛(A) [题意]给定n个点的带边权树,m条编号1~m的路径,Q次询问编号区间[L,R]所有链的交集的长度.n<=500000 ...
- 【HDU】6148 Valley Numer 数位DP
[算法]数位DP [题意]定义V-number为从左到看单位数字未出现先递增后递减现象的数字,求0~N中满足条件的数字个数.T<=200,lenth(n)<=100 [题解]百度之星201 ...
随机推荐
- ASP.NET Web API 全局权限和全局异常处理
在开发中,我使用json格式序列化,所以将默认的xml序列化移除 public static class WebApiConfig { public static void Register(Http ...
- Python 打包程序判断是否已经运行
代码如下: # -*- coding: UTF8 -*- from win32com.client import Dispatch import win32com import sys, os fro ...
- python类中的super,原理如何?MRO是什么东东?
下面这个URL解释得比较清楚. http://python.jobbole.com/86787/?utm_source=group.jobbole.com&utm_medium=related ...
- poj 2104:K-th Number(划分树,经典题)
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 35653 Accepted: 11382 Ca ...
- soapUI 使用Property
DRY 原则是一个比较普适的东西,在使用soapUI测试的时候,为了make life easy,我们必须要使用Property来集中化一些设置. 比如说从dev->test->uat 的 ...
- phpcms v9最常用的22个调用代码
新源网络工作室友情总结phpcms v9最常用的22个调用代码: 调用最新文章,带所在版块{pc:get sql="SELECT a.title, a.catid, b.catid, b.c ...
- js中ascii码的转换
今天在把原来用C写的程序移植到javascript上,但是有个地方一直调不通,后来才发现是js奇葩的字符处理出的问题.c中使用的字符处理比如加上一个字符值强制转换一下,在js中就行不通了. 但是js提 ...
- linux ssh key配置方法
转自:http://blog.csdn.net/zzk197/article/details/7915307 一:简洁的配置文件[root@cisco ~]# vi /etc/ssh/sshd_con ...
- ubuntu中jdk已经安装,但是eclipse启动报错
问题描述 在ubuntu中,jdk已经正常安装,java_home变量已经配置,但是启动eclipse的时候还是弹出以下错误信息: A Java RunTime Environment (JRE) o ...
- Android学习系列(37)--App调试内存泄露之Context篇(下)
接着<Android学习系列(36)--App调试内存泄露之Context篇(上)>继续分析. 5. AsyncTask对象 我N年前去盛大面过一次试,当时面试官极力推荐我使用AsyncT ...