标题 SLIC superpixel算法
作者 YangZheng
联系方式 263693992

SLIC算法是simple linear iterative cluster的简称,该算法用来生成超像素(superpixel)。

基本思想

算法大致思想是这样的,将图像从RGB颜色空间转换到CIE-Lab颜色空间,对应每个像素的(L,a,b)颜色值和(x,y)坐标组成一个5维向量V[l, a, b, x, y],两个像素的相似性即可由它们的向量距离来度量,距离越大,相似性越小。

算法首先生成K个种子点,然后在每个种子点的周围空间里搜索距离该种子点最近的若干像素,将他们归为与该种子点一类,直到所有像素点都归类完毕。然后计算这K个超像素里所有像素点的平均向量值,重新得到K个聚类中心,然后再以这K个中心去搜索其周围与其最为相似的若干像素,所有像素都归类完后重新得到K个超像素,更新聚类中心,再次迭代,如此反复直到收敛。怎么样,是不是感觉很像K-means聚类算法。

该算法接受一个参数K,用于指定生成的超像素数目。设原图有N个像素,则分割后每块超像素大致有N/K个像素,每块超像素的边长大致为S=[N/K]^0.5,开始我们每隔S个像素取一个聚类中心,然后以这个聚类中心的周围2S*2S为其搜索空间,与其最为相似的若干点即在此空间中搜寻。这里有一个问题,为了避免所选的聚类中心是边缘和噪声这样的不合理点,算法做了改进, 在3*3的窗口中将聚类中心移动到梯度最小的区域,梯度定义为:

这样就可以避免上面所说的情况。

最后可能出现一些小的区域d被标记为归属某一块超像素但却与这块超像素没有连接,这就需要把这块小区域d重新归类为与这块小区域d连接的最大的超像素中去,以保证每块超像素的完整。

算法详解

1 初始化聚类中心

初始化聚类中心,因为算法给定了距离,所以算法的初始中心为所划分区域的中心,即根据所给定的数量,划定所属类别的初始地区,如下图红框所示:

现在我们要将N为9的9*9的图像划分成为k为4的4个大小接近的超像素,做法就是首先以步距为

的距离划分超像素,然后将中心位置的结点为超像素的中心结点。设置中心像素的时候论文还进行了进一步的处理,即在中心结点的3*3领域内选取梯度最小的点作为初始超像素的中心结点,也就是下图中分别取黄色区域中梯度最小的点作为中心结点,好处是可以避免将超像素定位在边缘上,并且减少用噪声像素接种超像素的机会。不过官网上给出的matlab代码和下面要分析的南开大学给出的源码并没有进行这一步操作。个人觉得进行这步操作效果会得到改善,不过改善效果有限,有没有这一步影响不大,一个像素的间距对像素颜色的影响有限。


2 计算距离,跟新质心

其中m表示空间和像素颜色的相对重要性的度量。当m大时,空间邻近性更重要,并且所得到的超像素更紧凑(即它们具有更低的面积与周长比)。当m小时,所得到的超像素更紧密地粘附到图像边界,但是具有较小的规则尺寸和形状。当使用CIELAB色彩空间时,m可以在[1,40]的范围内。

第二个比较新颖的地方是计算距离的时候作者与传统的采用Kmeans进行分割的算法不同,并不是对整个空间的所有像素进行计算,而是限定了区域,区域大小为2S,即寻找时以初始聚类中心为寻找中心,确定一个2S*2S的矩形,如下图所示:

图1:减少超像素搜索区域。SLIC的复杂性在图像O(N)中的像素数目中是线性的,而常规的k均值算法是O(kNI),其中I是迭代次数。这在分配步骤中提供了每个聚类中心的搜索空间。(a)在常规k均值算法中,从每个聚类中心到图像中的每个像素计算距离。(b)SLIC仅计算从每个聚类中心到2S×2S区域内的像素的距离。注意,期望的超像素大小仅为S×S,由较小的正方形表示。这种方法不仅减少了距离计算,而且使得SLIC的复杂性与超像素的数量无关。

好处是显而易见的,限制搜索区域的大小显着地减少了距离计算的数量,这样可以极大的加快速度,可以将算法控制为线性复杂度。

接着便是对kMeans算法进行迭代,直到算法收敛或迭代次数大于某一个值,根据论文大部分图像在迭代次数为10以内,具体迭代思路如下:


3 合并孤立点

采用连通分量算法进行进一步的处理,这一步是我一开始不太明白的地方,不太懂什么是孤立的结点。直到我调试代码才明白,即迭代完成后有可能产生如下图所示的形状,图中的黄色方框所框出的结点也就是所谓的孤立点,为了使分割效果更好,我们通常不希望存在这种结点,于是可以采用连通分量进行下一步地修正。

图中的绿框为类别2的搜索范围,所以有可能产生图中黄色框中的孤立结点

作者采用的连通分量的概念来解决这个问题,简单说来就是,根据4邻域连通或8邻域连通(代码采用的是4邻域的连接方式)的连通算法,则图中的黄色方框皆为一个联通分量,判断这个联通分量的面积,如果面积过小,则将联通分量的分类分给最近的类别,即左上角的两个2分为1,左下角分为3,右下角分为4(具体的实现可以参看代码)。

图解算法

实现代码

https://github.com/csjy309450/SLIC-Superpixels

参考资料:

http://www.2cto.com/kf/201611/562258.html

http://blog.csdn.net/u013593585/article/details/52043424

SLIC superpixel算法的更多相关文章

  1. SLIC superpixel实现分析

    http://infoscience.epfl.ch/record/149300这是SLIC算法的官网,网站有和SLIC相关的资源. SLIC主要运用K-means聚类算法进行超像素的处理,聚类算法中 ...

  2. 实现SLIC算法生成像素画

    前言 像素风最早出现在8bit的电子游戏中,受制于电脑内存大小以及显示色彩单一, 只能使用少量像素来呈现内容,却成就了不少经典的像素游戏.随着内存容量与屏幕分辨率的提升,内存与显示媒介的限制不再是问题 ...

  3. SuperPixel

    目录 SLIC Superpixel algorithm 距离函数的选择 代码 Gonzalez R. C. and Woods R. E. Digital Image Processing (For ...

  4. 《SLIC Superpixels》阅读笔记

    原始链接:http://blog.csdn.net/jkhere/article/details/16819285 或许有改动,请参考原文! SLIC 超像素(SLICSuperpixels) Rad ...

  5. Python: PS 图像特效 — 抽象画风

    今天介绍一种基于图像分割和color map 随机采样生成一种抽象画风的图像特效,简单来说,就是先生成一张 color map 图,颜色是渐变的,然后针对要处理的图像,进行分割,这里用的是 SLIC ...

  6. 超像素经典算法SLIC的代码的深度优化和分析。

    现在这个社会发展的太快,到处都充斥着各种各样的资源,各种开源的平台,如github,codeproject,pudn等等,加上一些大型的官方的开源软件,基本上能找到各个类型的代码.很多初创业的老板可能 ...

  7. 机器学习:simple linear iterative clustering (SLIC) 算法

    图像分割是图像处理,计算机视觉领域里非常基础,非常重要的一个应用.今天介绍一种高效的分割算法,即 simple linear iterative clustering (SLIC) 算法,顾名思义,这 ...

  8. SILC超像素分割算法详解(附Python代码)

    SILC算法详解 一.原理介绍 SLIC算法是simple linear iterative cluster的简称,该算法用来生成超像素(superpixel) 算法步骤: 已知一副图像大小M*N,可 ...

  9. 跑superpixel的程序

    知乎上对superpixel的讲解还不错:https://www.zhihu.com/question/27623988 superpixel的算法有很多,opencv中也包含了很多,我找了一个比较经 ...

随机推荐

  1. 原生ajax写的上拉加载

    上拉加载的思路 1 上拉加载是要把屏幕拉到最底部的时候触发ajax事件请求数据 2.所有要获取屏幕的高度 文档的高度 和滚动的高度 下面的代码是已经做好了兼容的可以直接拿来用 Javascript: ...

  2. Hive 时间日期处理总结

    最近用hive比较多,虽然效率低,但是由于都是T+1的业务模式.所以也就不要求太多了,够用就行.其中用的吧比较多就是时间了,由于大数据中很多字段都不是标准的时间类型字段,所以期间涉及了很多的时间日期字 ...

  3. [记录]Zabbix3.4配置监控Oracle12c的存活状态和表空间使用率

    Zabbix3.4配置监控Oracle的存活状态和表空间使用率 1.安装zabbix3.4 agent: # rpm -ivh http://repo.zabbix.com/zabbix/3.4/rh ...

  4. [译]前端JS面试题汇总 Part 1(事件委托/this关键字/原型链/AMD与CommonJS/自执行函数)

    原文:https://github.com/yangshun/front-end-interview-handbook/blob/master/questions/javascript-questio ...

  5. js创建数组的三个方式

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. PHP的错误机制

    特别说明:文章的PHP版本使用5.5.32 PHP的错误级别 首先需要了解php有哪些错误.截至到php5.5,一共有16个错误级别 注意:尝试下面的代码的时候请确保打开error_log: erro ...

  7. 业余草分享100套精选1000G架构师资料课程(超1T的IT学习资料免费送)

    业余草分享100套精选1000G架构师资料课程(超1T的IT学习资料免费送). 超过1024G的IT学习资料免费领取,你值得拥有! 领取资源方式,关注“业余草”公众号,回复对应的关键字 01.回复”我 ...

  8. POJ - 3984 bfs [kuangbin带你飞]专题一

    bfs搜索过程中将路径保存下即可. AC代码 #include<cstdio> #include<cstring> #include<algorithm> #inc ...

  9. Hbase多列范围查找(效率)

    Hbase索引表的结构 Hbase Rowkey 设计 Hbase Filter Hbase二级索引 Hbase索引表的结构 在HBase中,表格的Rowkey按照字典排序,Region按照RowKe ...

  10. Pandaboard ES编译bootloader、xloader、内核、以及安卓系统

    Building bootloader and kernel Bootloader Startwith building the bootloader. To learn more about the ...