gevent:异步理论与实战[转]
gevent库中使用的最核心的是Greenlet-一种用C写的轻量级python模块。在任意时间,系统只能允许一个Greenlet处于运行状态。那怎么让程序高并发,从而实现程序高效运行呢?
这就是我们常说的异步,在网络请求中,可以用下面的图清晰的看出异步的效率
串行和异步
高并发的核心是让一个大的任务分成一批子任务,并且子任务会被被系统高效率的调度,实现同步或者异步。在两个子任务之间切换,也就是经常说到的上下文切换。
同步就是让子任务串行,而异步有点影分身之术,但在任意时间点,真身只有一个,子任务并不是真正的并行,而是充分利用了碎片化的时间,让程序不要浪费在等待上。这就是异步,效率杠杆的。
gevent中的上下文切换是通过yield实现。在这个例子中,我们会有两个子任务,互相利用对方等待的时间做自己的事情。这里我们使用gevent.sleep(0)代表程序会在这里停0秒。
import gevent
def foo():
print('Running in foo')
gevent.sleep(0)
print('Explicit context switch to foo again')
def bar():
print('Explicit context to bar')
gevent.sleep(0)
print('Implicit context switch back to bar')
gevent.joinall([
gevent.spawn(foo),
gevent.spawn(bar),])
我谷歌了一下,spawn的意思是分支,这就很好的跟上面的那个图对应起来,加强记忆。spawn-影分身之术。O(∩_∩)O~,让待运行的任务切分成更小的一批子任务。
下面我们看看运行的顺序:
Running in foo
Explicit context to bar
Explicit context switch to foo again
Implicit context switch back to bar
这里我放一个动图,看看整个大的任务的调度顺序
同步异步的顺序问题
同步运行就是串行,123456...,但是异步的顺序是随机的任意的(根据子任务消耗的时间而定)。
下面我们来看个代码
import gevent
import random
def task(pid):
"""
Some non-deterministic task
"""
gevent.sleep(random.randint(0,2)*0.001)
print('Task %s done' % pid)
#同步(结果更像串行)
def synchronous():
for i in range(1,10):
task(i)
#异步(结果更像乱步)
def asynchronous():
threads = [gevent.spawn(task, i) for i in range(10)]
gevent.joinall(threads)
print('Synchronous同步:')
synchronous()
print('Asynchronous异步:')
asynchronous()
Synchronous同步:
Task 1 done
Task 2 done
Task 3 done
Task 4 done
Task 5 done
Task 6 done
Task 7 done
Task 8 done
Task 9 done
Asynchronous异步:
Task 1 done
Task 5 done
Task 6 done
Task 2 done
Task 4 done
Task 7 done
Task 8 done
Task 9 done
Task 0 done
Task 3 done
同步案例中所有的任务都是按照顺序执行,这导致主程序是阻塞式的(阻塞会暂停主程序的执行)。
gevent.spawn会对传入的任务(子任务集合)进行进行调度,gevent.joinall方法会阻塞当前程序,除非所有的greenlet都执行完毕,程序才会结束。
实战
gevent之前写过一期,但只是比较效率。这一期我们要实现gevent到底怎么用,怎么把异步访问得到的数据提取出来。
最近做了个英语文本数据处理的任务,先做词频统计,然后对每个词语标注音标和注释。其中标注音标和注释,我没有词典,只能用爬虫的方式访问有道词典,获取想要的数据。
但是常规的for循环,word by word很慢,于是就想到用gevent。
分析url规律
首先抓包分析,打开开发者工具,清空访问记录。在有道词典搜索框输入“hello”按回车。观察数据请求情况 发现有道的url构建很简单。
#url构建只需要传入word即可
url = "http://dict.youdao.com/w/eng/{}/".format(word)
解析网页数据
def fetch_word_info(word):
url = "http://dict.youdao.com/w/eng/{}/".format(word)
resp = requests.get(url,headers=headers)
doc = pq(resp.text)
pros = ''
for pro in doc.items('.baav .pronounce'):
pros+=pro.text()
description = ''
for li in doc.items('#phrsListTab .trans-container ul li'):
description +=li.text()
return {'word':word,'音标':pros,'注释':description}
同步代码
因为requests库在任何时候只允许有一个访问结束完全结束后,才能进行下一次访问。无法通过正规途径拓展成异步,因此这里使用了monkey补丁
import requests
from pyquery import PyQuery as pq
import gevent
import time
import gevent.monkey
gevent.monkey.patch_all()
words = ['good','bad','cool',
'hot','nice','better',
'head','up','down',
'right','left','east']
def synchronous():
start = time.time()
print('同步开始了')
for word in words:
print(fetch_word_info(word))
end = time.time()
print("同步运行时间: %s 秒" % str(end - start))
#执行同步
synchronous()
有道词典网站速度比较慢,基本上半秒解决一个词注释音标问题。那要是3600词就需要半个小时,这速度坑啊!
异步代码
因为requests库在任何时候只允许有一个访问结束完全结束后,才能进行下一次访问。无法通过正规途径拓展成异步,因此这里使用了monkey补丁
import requests
from pyquery import PyQuery as pq
import gevent
import time
import gevent.monkey
gevent.monkey.patch_all()
words = ['good','bad','cool',
'hot','nice','better',
'head','up','down',
'right','left','east']
def asynchronous():
start = time.time()
print('异步开始了')
events = [gevent.spawn(fetch_word_info,word) for word in words]
wordinfos = gevent.joinall(events)
for wordinfo in wordinfos:
#获取到数据get方法
print(wordinfo.get())
end = time.time()
print("异步运行时间: %s 秒"%str(end-start))
#执行异步
asynchronous()
这速度,酸爽啊
速度与激情
6.44s vs 0.82s,让我们重新欣赏一会儿这两个动图
项目下载地址
链接: https://pan.baidu.com/s/1eT5gJrO 密码: wad8
gevent:异步理论与实战[转]的更多相关文章
- SSIS从理论到实战,再到应用
原文:SSIS从理论到实战,再到应用 一,是什么(What?) 1.SSIS是Microsoft SQL Server Integration Services的简称,是生成高性能数据集成解决方案(包 ...
- SSIS从理论到实战,再到应用(6)----SSIS的自带日志功能
原文:SSIS从理论到实战,再到应用(6)----SSIS的自带日志功能 上期回顾: SSIS从理论到实战,再到应用(5)----流程控制之Foreach循环 博主最近新负责了一个ssis大项目的架构 ...
- SSIS从理论到实战,再到应用(7)----常用的数据类型转换操作
原文:SSIS从理论到实战,再到应用(7)----常用的数据类型转换操作 上期回顾: SSIS从理论到实战,再到应用(6)----SSIS的自带日志功能 在抽取各种应用的数据时候,经常会遇到数据需要转 ...
- SSIS从理论到实战,再到应用(4)----流程控制之For循环
原文:SSIS从理论到实战,再到应用(4)----流程控制之For循环 上期回顾: SSIS从理论到实战,再到应用(3)----SSIS包的变量,约束,常用容器 在SSIS体系中,控制流可能经常会遇到 ...
- SSIS从理论到实战,再到应用(5)----流程控制之Foreach循环
原文:SSIS从理论到实战,再到应用(5)----流程控制之Foreach循环 上期回顾: SSIS从理论到实战,再到应用(4)----流程控制之For循环 上一期讲了For循环,Foreach循环相 ...
- SSIS从理论到实战,再到应用(2)----SSIS包的控制流
原文:SSIS从理论到实战,再到应用(2)----SSIS包的控制流 前文回顾: SSIS从理论到实战,再到应用(1)----创建自己的第一个包 上次说到创建了自己的第一个包,完成了简单的数据从数据库 ...
- SSIS从理论到实战,再到应用(3)----SSIS包的变量,约束,常用容器
原文:SSIS从理论到实战,再到应用(3)----SSIS包的变量,约束,常用容器 上期回顾: SSIS从理论到实战,再到应用(2)----SSIS包的控制流 首先我们来看看包里面的变量 SSIS ...
- SSIS从理论到实战,再到应用(1)----创建自己的第一个包
原文:SSIS从理论到实战,再到应用(1)----创建自己的第一个包 其实,如果你使用sql2008的导出导入工具的时候,你就已经在使用包了. 目标:使用sql2008 导入导出工具,导入excel数 ...
- Docker最全教程——从理论到实战(八)
在本系列教程中,笔者希望将必要的知识点围绕理论.流程(工作流程).方法.实践来进行讲解,而不是单纯的为讲解知识点而进行讲解.也就是说,笔者希望能够让大家将理论.知识.思想和指导应用到工作的实际场景和实 ...
随机推荐
- Learning ROS forRobotics Programming Second Edition学习笔记(八)indigo rviz gazebo
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS forRobotics Pro ...
- Android JNI 使用的数据结构JNINativeMethod详解
Andoird 中使用了一种不同传统Java JNI的方式来定义其native的函数.其中很重要的区别是Andorid使用了一种Java 和 C 函数的映射表数组,并在其中描述了函数的参数和返回值.这 ...
- 俺的新书《Sencha Touch实战》终于出版了
内容简介:Sencha框架是第一个基于HTML 5的移动也能给予框架,可以让Web应用看起来像网络应用.美丽的用户 界面 组件和丰富的数据管理,全部基于最新的HTML 5和CSS 3的Web标准,全部 ...
- #pragma comment(转)
此文转自微软MSDN.注意这是在Windows上才有的,Linux上可没有. #pragma comment( comment-type [,"commentstring"] ) ...
- iOS中获取本地通讯录联系人以及汉字首字母排序
iOS中获取手机通讯录中的联系人信息: /*** 加载本地联系人*/ - (void)loadLocalContacts { //新建一个通讯录类 ABAddressBookRef addressBo ...
- Java 去掉字符串中的换行符回车符等
去掉一个字符串中的换行符.回车符等,将连续多个空格替换成一个空格 String string = "this just a test" Pattern p = Pattern.co ...
- ubuntu14.04下安装rubinius测试原生线程
因为CRuby(MRI)本身不支持原生多线程,所以想试一下其他ruby解释器实现对原生多线程的支持.于是安装rubinius折腾一下:) 在rubinius官网下载2.4.1源代码,然后驾轻就熟首先b ...
- java线程的同步控制--重入锁ReentrantLock
我们常用的synchronized关键字是一种最简单的线程同步控制方法,它决定了一个线程是否可以访问临界区资源.同时Object.wait() 和Object.notify()方法起到了线程等待和通知 ...
- redis删除所有key
flushdb 删除当前数据库的所有keyflushall 删除所有数据库的所有keydbsize 返回当前数据库的key的数量
- 用js来实现那些数据结构14(树02-AVL树)
在使用二叉搜索树的时候会出现 一个问题,就是树的一条分支会有很多层,而其他的分支却只有几层,就像下面这样: 如果数据量够大,那么我们在某条边上进行增删改查的操作时,就会消耗大量的时间.我们花费精力去构 ...