Perfect Cubes
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 16522   Accepted: 8444

Description

For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the "perfect cube" equation a^3 = b^3 + c^3 + d^3 (e.g. a quick calculation will show that the equation 12^3 = 6^3 + 8^3 + 10^3 is indeed true). This problem requires that you write a program to find all sets of numbers {a,b,c,d} which satisfy this equation for a <= N.

Input

One integer N (N <= 100).

Output

The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.

描述

数百年来费马的最后定理,其简单地说明,对于n> 2,没有整数a,b,c> 1使得a ^ n = b ^ n + c ^ n仍然难以确认。(最近的证据被认为是正确的,尽管它仍在进行详细审查。)然而,有可能找到满足“完美立方”方程的大于1的整数a ^ 3 = b ^ 3 + c ^ 3 + d ^ 3(例如,快速计算将显示等式12 ^ 3 = 6 ^ 3 + 8 ^ 3 + 10 ^ 3确实为真)。这个问题要求你编写一个程序来查找满足<= N的这个等式的所有数字{a,b,c,d}。

输入

一个整数N(N <= 100)。

产量

输出应如下所示列出,每行一个完美的立方体,以a的非递减顺序排列(即行应按其值排序)。b,c和d的值也应该在线本身上以非递减顺序列出。确实存在几个可以从多个不同的b,c和d三元组产生的a值。在这些情况下,应首先列出b值较小的三元组。

Sample Input

24

Sample Output

Cube = 6, Triple = (3,4,5)
Cube = 12, Triple = (6,8,10)
Cube = 18, Triple = (2,12,16)
Cube = 18, Triple = (9,12,15)
Cube = 19, Triple = (3,10,18)
Cube = 20, Triple = (7,14,17)
Cube = 24, Triple = (12,16,20)

Source

 
#include <stdio.h>
int main(){
    int n,a,b,c,d;
    scanf("%d",&n);
    for(a=2;a<=n;++a)
        for(b=2;b<a;++b)
            for(c=b;c<a;++c)
                for(d=c;d<a;++d)
                    if(a*a*a==b*b*b+c*c*c+d*d*d)
                        printf("Cube = %d, Triple = (%d,%d,%d)\n",a,b,c,d);
    return 0;
}

  

Poj1543的更多相关文章

  1. OJ题目分类

    POJ题目分类 | POJ题目分类 | HDU题目分类 | ZOJ题目分类 | SOJ题目分类 | HOJ题目分类 | FOJ题目分类 | 模拟题: POJ1006 POJ1008 POJ1013 P ...

随机推荐

  1. 使用Akka的远程调用

    概述 正如其它RPC或者RMI框架那样,Akka也提供了远程调用的能力.服务端在监听的端口上接收客户端的调用.本文将在<Spring与Akka的集成>一文的基础上介绍Akka的remote ...

  2. 大白话5分钟带你走进人工智能-第三节最大似然推导mse损失函数(深度解析最小二乘来源)(1)

                                                    第三节最大似然推导mse损失函数(深度解析最小二乘来源)        在第二节中,我们介绍了高斯分布的 ...

  3. Logistic回归二分类Winner or Losser----台大李宏毅机器学习作业二(HW2)

    一.作业说明 给定训练集spam_train.csv,要求根据每个ID各种属性值来判断该ID对应角色是Winner还是Losser(0.1分类). 训练集介绍: (1)CSV文件,大小为4000行X5 ...

  4. Boosting(提升方法)之GBDT

    一.GBDT的通俗理解 提升方法采用的是加法模型和前向分步算法来解决分类和回归问题,而以决策树作为基函数的提升方法称为提升树(boosting tree).GBDT(Gradient Boosting ...

  5. 使用NSSM把.Net Core部署至 Windows 服务

    为什么部署至Windows Services 在很多情况下,很少会把.Net Core项目部署至Windows服务中,特别是Asp.net Core就更少了.一般情况下,Asp.net Core会部署 ...

  6. 使用ConcurrentHashMap一定线程安全?

    前言 老王为何半夜惨叫?几行代码为何导致服务器爆炸?说好的线程安全为何还是出问题?让我们一起收看今天的<走进IT> 正文 CurrentHashMap出现背景 说到ConcurrentHa ...

  7. 《k8s-1.13版本源码分析》- Scheduler启动前逻辑

    本文原始地址(gitbook格式):https://farmer-hutao.github.io/k8s-source-code-analysis/core/scheduler/before-sche ...

  8. windows下,提权代码.

    #include <windows.h> bool AdjustPrivileges() { HANDLE hToken = NULL; TOKEN_PRIVILEGES tp; TOKE ...

  9. NET 泛型,详细介绍

    今天的文章是因为再给一个朋友讲这个的时候随手记录下整理出来的.说白了就是把前辈们曾经给我吹过的我又吹了出去. 泛型:是C# FrameWork 2.0 时代 加入进来的,可以说对与Net开发人员来说泛 ...

  10. cesium 之三维场景展示篇(附源码下载)

    前言 cesium 官网的api文档介绍地址cesium官网api,里面详细的介绍 cesium 各个类的介绍,还有就是在线例子:cesium 官网在线例子,这个也是学习 cesium 的好素材. 内 ...