BZOJ4574 [Zjoi2016]线段树
比较厉害的dp.
网上题解都是利用了随机的条件,用了一个$O(n^4)$的dp,这里简单说一下。
用f(x,i,l,r)表示经过前i轮操作,[l,r]的所有数<=x,且l-1和r+1都>x的方案数。
转移:f(x,i,l,r)=f(x,i-1,l,r)*g(l,r)+f(x,i-1,j,r)*(j-1)+f(x,i-1,l,k)*(n-k),j<l,k>r
其中,g(l,r)=l*(l-1)/2+(r-l+1)*(r-l+2)/2+(n-r)*(n-r+1)/2
用个前缀和优化一下转移即可。
设h(x,i)表示最终位置i的数<=x的方案数,h(x,i)=$\sum_{l=1}^i\sum_{r=i}^nf(x,q,l,r)$
ans(i)=$\sum_xx*(h(x,i)-h(x-1,i))$
但是这样的做法不够优秀,有没有不利用随机的特性,严格$O(n^3)$的做法呢?
答案是有的。
其实很简单,观察发现转移的时候第一维是固定的,我们可以直接用dp(i,l,r)表示各种x的贡献和。
把上面ans(i)中的h展开,发现dp(i,l,r)=$\sum_x-f(x,i,l,r)$
转移没有变化,但初始化有变化。
初始化时的dp值怎么计算呢?
发现对于一段极长的区间[l,r],dp(0,l,r)=max(a(l)...a(r))-min(a(l-1),a(r+1)),对于非极长的区间dp(0,l,r)=0
发现#define一个for真好用233.
#include <cstdio>
#include <algorithm>
#define F(i,l,r) for(int i=l;i<=r;i++) const int N=,p=1e9+;
int n,q,a[N],f[][N][N],g[N][N],s1[][N][N],s2[][N][N]; int main() {
scanf("%d%d",&n,&q),a[]=a[n+]=1e9+;
F(i,,n) scanf("%d",&a[i]);
F(i,,n) {
int r=;
F(j,i,n) {
g[i][j]=i*(i-)/+(n-j)*(n-j+)/+(j-i+)*(j-i+)/,r=std::max(r,a[j]);
if(i==&&j==n) f[][i][j]=r;
else if(a[i-]>r&&a[j+]>r) f[][i][j]=(r-std::min(a[i-],a[j+])+p)%p;
}
}
F(i,,q) {
int s=i&,t=(i&)^;
F(j,,n) for(int k=n;k>=j;k--) s2[t][j][k]=(s2[t][j][k+]+1LL*f[t][j][k]*(n-k))%p;
F(j,,n) F(k,j,n) s1[t][j][k]=(s1[t][j-][k]+1LL*f[t][j][k]*(j-))%p,f[s][j][k]=(1LL*f[t][j][k]*g[j][k]+s1[t][j-][k]+s2[t][j][k+])%p;
}
F(i,,n) {int a1=; F(j,,i) F(k,i,n) a1=(a1+f[q&][j][k])%p; printf("%d%c",a1," \n"[i==n]);}
return ;
}
BZOJ4574 [Zjoi2016]线段树的更多相关文章
- bzoj4574:Zjoi2016线段树 dp
传送门 题解传送门 //Achen #include<algorithm> #include<iostream> #include<cstring> #includ ...
- bzoj 4574: [Zjoi2016]线段树
Description 小Yuuka遇到了一个题目:有一个序列a_1,a_2,?,a_n,q次操作,每次把一个区间内的数改成区间内的最大值,问 最后每个数是多少.小Yuuka很快地就使用了线段树解决了 ...
- 【UOJ#196】【BZOJ4574】[Zjoi2016]线段树
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4574 http://uoj.ac/problem/196 考虑数字随机并且值域够大,我们 ...
- Luogu3352 ZJOI2016 线段树 概率、区间DP
传送门 考虑对于每一个位置\(i\),计算所有可能的结果出现的概率. 定义一个区间\([l,r]\)为对于\(x\)的极大区间,当且仅当\(\max \limits _{i=l}^r \{a_i\} ...
- 【ZJOI2016】线段树
[ZJOI2016]线段树 ZJOI的题神啊. 我们考虑计算每个位置\(p\),它在操作过后变成第\(x\)个数的操作序列数. 我们枚举\(x\).我们先得到了\(L_x,R_x\)表示最左边比\(x ...
- @loj - 2093@ 「ZJOI2016」线段树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Yuuka 遇到了一个题目:有一个序列 a1,a2,..., ...
- bzoj3932--可持久化线段树
题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...
- codevs 1082 线段树练习 3(区间维护)
codevs 1082 线段树练习 3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...
- codevs 1576 最长上升子序列的线段树优化
题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...
随机推荐
- poj 2142 The Balance
The Balance http://poj.org/problem?id=2142 Time Limit: 5000MS Memory Limit: 65536K Descripti ...
- Centos6.7的在虚拟机virulBox下的lamp平台的搭建
实验环境: linux:小甲鱼带你学C语言,带你飞的提供的体积比较小的centos6.7和virtualBox mysql,apahce,php是燕十八在Linux基础进阶中提供的安装方式: 结果,安 ...
- java 实现多文件打包下载
jsp页面js代码: function downloadAttached(){ var id = []; id.push(infoid); var options = {}; options.acti ...
- kubernetes入门(08)kubernetes单机版的安装和使用
kubectl get - 类似于 docker ps ,查询资源列表 kubectl describe - 类似于 docker inspect ,获取资源的详细信息 kubectl logs - ...
- python网络爬虫与信息提取 学习笔记day3
Day3: 只需两行代码解析html或xml信息 具体代码实现:day3_1 注意BeautifulSoup的B和S需要大写,因为python大小写敏感 import requests r ...
- 从感知机到 SVM,再到深度学习(一)
在上篇博客中提到,如果想要拟合一些空间中的点,可以用最小二乘法,最小二乘法其实是以样例点和理论值之间的误差最小作为目标.那么换个场景,如果有两类不同的点,而我们不想要拟合这些点,而是想找到一条 ...
- EasyUI DataGrid - 嵌套的DataGrid
实现效果: 一.在页面头部引用视图脚本JS文件 <script src="@Url.Content("~/Resources/EasyUI/plugins/datagrid- ...
- python的错误处理
一.python的错误处理 在程序运行的过程中,如果发生了错误,可以事先约定返回一个错误代码,这样,就可以知道是否有错以及出错的原因. 在操作系统提供的调用中,返回错误码非常常见.比如打开文件的函数o ...
- webpack全局安装
具体项目中才能使用webpack命令: npm install webpack -g npm install webpack-dev-server -g
- 学习React系列(一)——React.Component 生命周期
挂载中(只执行一次) 以下方法在组件实例正被创建和插入到DOM中时调用 constructor()一般用于初始化state和方法的this绑定 componentWillMount() render( ...