[SDOI2016]硬币游戏
题目描述
Alice 和 Bob 现在在玩的游戏,主角是依次编号为 1 到 n 的 n 枚硬币。每一枚硬币都有两面,我们分别称之为正面和反面。一开始的时候,有些硬币是正面向上的,有些是反面朝上的。Alice 和 Bob 将轮流对这些硬币进行翻转操作,且Alice 总是先手。
具体来说每次玩家可以选择一枚编号为 x,要求这枚硬币此刻是反面朝上的。对于编号 x 来说,我们总可以将 x 写成 $ \cdot 2^a \cdot 3^b$ ,其中 a 和 b 是非负整数,c 是与 2,3 都互质的非负整数,然后有两种选择:
选择整数 p,q 满足 $a \ge pq , p \ge 1$ 且 $1 \leq q \leq \text{MAXQ}$ ,然后同时翻转所有编号为 $c \cdot 2^{a-pj} \cdot 3^b$ 的硬币,其中 $j = 0, 1, 2, \ldots q$ 。
选择整数 p,q 满足 $b \geq pq, p \ge 1$ 且 $1 \leq q \leq \text{MAXQ}$ ,然后同时翻转所有编号为 $c \cdot 2^a \cdot 3^{b-pj}c$ 的硬币,其中$j = 0, 1, 2, \ldots q$ 。
可以发现这个游戏不能无限进行下去,当某位玩家无法继续操作上述操作时,便输掉了游戏。作为先手的 Alice,总是希望可以在比赛开始之前就知道自己能否获胜。她知道自己和 Bob 都是充分聪明的,所以在游戏过程中,两人都会最优化自己的策略并尽量保证自己处于不败的情形中。
输入输出格式
输入格式:
本题有多组测试数据,第一行输入一个整数T,表示总的数据组数。之后给出T组数据
每组数据第一行输入两个整数n,MAXQ
第二行输入n个整数,第i个数表示第i个硬币的初始状态,0表示反面朝上,1表示正面朝上
输出格式:
输出共有t行。对于每一组数据来说,如果Alice先手必胜,则输出"win"(不包括引号),否则输出"lose"
输入输出样例
暂无测试点
说明
对于100%的数据$1\le n \le 30000,1 \le MAXQ \le 20,t\le 100$ 。
对于$p=c*2^{i}*3^{j}$求出SG[i][j]
c显然可以无视
那么枚举i,j是log级别的
接下来枚举p,q,再求翻的牌异或和
总复杂度应该是$O(log^{4}n+n)$
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long lol;
int lg2,lg3;
lol pw2[],pw3[],n,MaxQ,SG[][],ans;
bool vis[];
void getSG()
{int x;
lol i,j,k,p,q;
lg2=lg3=;
x=;
while (x<=n) x*=,lg2++;
x=;
while (x<=n) x*=,lg3++;
pw2[]=pw3[]=;
for (i=;i<=lg2;i++)
pw2[i]=pw2[i-]*;
for (i=;i<=lg3;i++)
pw3[i]=pw3[i-]*;
for (i=;i<=lg2;i++)
{
for (j=;j<=lg3;j++)
if (pw2[i]*pw3[j]<=n)
{
memset(vis,,sizeof(vis));
for (p=;p<=i;p++)
{
for (q=;q<=MaxQ&&p*q<=i;q++)
{
int tmp=;
for (k=;k<=q;k++)
{
tmp^=SG[i-p*k][j];
}
vis[tmp]=;
}
}
for (p=;p<=j;p++)
{
for (q=;q<=MaxQ&&p*q<=j;q++)
{
int tmp=;
for (k=;k<=q;k++)
{
tmp^=SG[i][j-p*k];
}
vis[tmp]=;
}
}
for (k=;;k++)
if (vis[k]==)
{
SG[i][j]=k;
break;
}
}
else break;
}
}
void work()
{int i,x,y,k1,k2;
cin>>n>>MaxQ;
getSG();
ans=;
for (i=;i<=n;i++)
{
scanf("%d",&x);
if (x==)
{
y=i;k1=,k2=;
while (y%==) y/=,k1++;
while (y%==) y/=,k2++;
ans^=SG[k1][k2];
}
}
if (ans) printf("win\n");
else printf("lose\n");
}
int main()
{int T;
cin>>T;
while (T--) work();
}
[SDOI2016]硬币游戏的更多相关文章
- bzoj4600 [Sdoi2016]硬币游戏
Description Alice和Bob现在在玩的游戏,主角是依次编号为1到n的n枚硬币.每一枚硬币都有两面,我们分别称之为正面和反面.一开始的时候,有些硬币是正面向上的,有些是反面朝上的.Alic ...
- TYVJ P1075 硬币游戏 Label:dp
背景 农民John的牛喜欢玩硬币,所以John就为它们发明了一个新的两人硬币游戏,叫做Xoinc. 描述 最初地面上有一堆n个硬币(5<=n<=2000),从上面数第i个硬币的价值为C_i ...
- tyvj P1075 - 硬币游戏 博弈DP
P1075 - 硬币游戏 From price Normal (OI)总时限:10s 内存限制:128MB 代码长度限制:64KB 背景 Background 农民John的牛喜欢玩 ...
- 1289 大鱼吃小鱼 1305 Pairwise Sum and Divide 1344 走格子 1347 旋转字符串 1381 硬币游戏
1289 大鱼吃小鱼 有N条鱼每条鱼的位置及大小均不同,他们沿着X轴游动,有的向左,有的向右.游动的速度是一样的,两条鱼相遇大鱼会吃掉小鱼.从左到右给出每条鱼的大小和游动的方向(0表示向左,1表示向右 ...
- BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)
1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...
- BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】
1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 897 Solved: 394[Submit][Status ...
- [Sdoi2017]硬币游戏 [高斯消元 KMP]
[Sdoi2017]硬币游戏 题意:硬币序列,H T等概率出现,\(n \le 300\)个人猜了一个长为$ m \le 300$的字符串,出现即获胜游戏结束.求每个人获胜概率 考场用了[1444: ...
- 51Nod 1381 硬币游戏
参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6445369.html 1381 硬币游戏 基准时间限制:1 秒 空间限制:131072 KB 分值 ...
- 【BZOJ4820】[SDOI2017]硬币游戏(高斯消元)
[BZOJ4820][SDOI2017]硬币游戏(高斯消元) 题面 BZOJ 洛谷 题解 第一眼的感觉就是构\(AC\)自动机之后直接高斯消元算概率,这样子似乎就是\(BZOJ1444\)了.然而点数 ...
随机推荐
- 软工实践项目需求分析(团队)修改版get√-黄紫仪
日常前言:随笔距离文档大体完成已经过去了2天+(因为中间插了一波结对作业),所以目测感受没有那时候清晰(那时候烦的想打人了都--)需求分析那边去百度找了模板.emmmm好多东西感觉听都没听说过QAQ, ...
- DEVC使用问题集锦
一.DEVC++编译出现"Id return 1 exit status" 这是初学者刚用DEVC经常碰到问题,一般有如下解决方法: 1.首先检查下是否有c的exe程序开着,若开着 ...
- python的迭代器、生成器、装饰器
迭代器.生成器.装饰器 在这个实验里我们学习迭代器.生成器.装饰器有关知识. 知识点 迭代器 生成器 生成器表达式 闭包 装饰器 实验步骤 1. 迭代器 Python 迭代器(Iterators)对象 ...
- 使用XIB实现嵌套自定义视图
在进行iOS开发的过程中,对于一些复杂的界面,我们可以通过Interface Builder这个Xcode集成的可视化界面编辑工具在完成,这回节省大部分时间以及代码量.它的使用方法这里不做介绍了,这次 ...
- 使用Putty连接Amazon EC2 Instance
Amazon的EC2中,默认是不允许使用用户名和密码直接连接Instance的,而是通过AWS (Amazon Web Service)提供的证书.在第一次使用EC2的时候,AWS会要求你创建一个证书 ...
- Node入门教程(7)第五章:node 模块化(下) npm与yarn详解
Node的包管理器 JavaScript缺少包结构的定义,而CommonJS定义了一系列的规范.而NPM的出现则是为了在CommonJS规范的基础上,实现解决包的安装卸载,依赖管理,版本管理等问题. ...
- slf4j 与 log4j2 基本用法
简单的说 log4j2 是log4j2的升级版,解决了部分性能问题和部分死锁问题,其使用方式与使用配置与log4j相同. 建议使用maven依赖直接使用log4j2 <dependency> ...
- 更优雅的方式: JavaScript 中顺序执行异步函数
火于异步 1995年,当时最流行的浏览器--网景中开始运行 JavaScript (最初称为 LiveScript). 1996年,微软发布了 JScript 兼容 JavaScript.随着网景.微 ...
- Collaborative Filtering(协同过滤)算法详解
基本思想 基于用户的协同过滤算法是通过用户的历史行为数据发现用户对商品或内容的喜欢(如商品购买,收藏,内容评论或分享),并对这些喜好进行度量和打分.根据不同用户对相同商品或内容的态度和偏好程度计算用户 ...
- Mybatis框架入门
Mybaits框架 一.什么是Mybatis MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了googl ...