[bzoj1143][CTSC2008]祭祀
题意:给定一个n个点m条边的有向无环图,你要选出最多的点,并且满足任意两点之间都不存在通路。2)输出每个点选了它之后还是否有最优解。 n<=100 m<=1000
题解:每个点拆两个点,把每个点向它能走到点连边,然后最小割/二分图匹配。
这题想了好久,后来想出这个模型感觉没问题.....
第二个问貌似把每个点都强行不割跑一遍应该不会T吧.....
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define S 0
#define T 201
#define INF 2000000000
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} int mark[T+];
int head[T+],cnt=,n,m,ans,cc=,thead[T+],q[T+],top,d[T+];
struct edge{
int to,next,w;
}e[T*T+];
struct tedge{
int to,next;
}e2[]; inline void ins(int f,int t){e2[++cc]=(tedge){t,thead[f]};thead[f]=cc;}
inline void ins(int f,int t,int w)
{
e[++cnt]=(edge){t,head[f],w};head[f]=cnt;
e[++cnt]=(edge){f,head[t],};head[t]=cnt;
} void build(int x,int from)
{
if(mark[x]!=from&&x!=from) ins(from,x+n,INF),mark[x]=from;
for(int i=thead[x];i;i=e2[i].next)
if(mark[e2[i].to]!=from)
build(e2[i].to,from);
} int dfs(int x,int f)
{
if(x==T)return f;
int used=;
for(int i=head[x];i;i=e[i].next)
if(e[i].w&&d[e[i].to]==d[x]+)
{
int w=dfs(e[i].to,min(f-used,e[i].w));
used+=w;e[i].w-=w;e[i^].w+=w;
if(used==f)return f;
}
return used;
} bool bfs()
{
memset(d,,sizeof(d));int i,j;
for(d[q[i=top=]=S]=;i<=top;++i)
for(int j=head[q[i]];j;j=e[j].next)
if(e[j].w&&!d[e[j].to])
d[q[++top]=e[j].to]=d[q[i]]+;
return d[T];
} int main()
{
ans=n=read();m=read();
for(int i=;i<=m;i++)
{
int x=read(),y=read();
ins(y,x);
}
for(int i=;i<=n;i++)build(i,i);
for(int i=;i<=n;i++)ins(S,i,),ins(i+n,T,);
while(bfs())ans-=dfs(S,INF);
cout<<ans;
return ;
}
[bzoj1143][CTSC2008]祭祀的更多相关文章
- BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】
1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 3236 Solved: 1651 [Submit] ...
- BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1143 题意概括 给出一个有向图.求最小链覆盖. 题解 首先说两个概念: 链:一条链是一些点的集合, ...
- bzoj1143: [CTSC2008]祭祀river 最长反链
题意:在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河道连 ...
- [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)
题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...
- BZOJ1143: [CTSC2008]祭祀river 网络流_Floyd_最大独立集
Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都 会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组 ...
- [BZOJ1143][CTSC2008]祭祀river(最长反链)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...
- BZOJ1143 [CTSC2008] 祭祀river
AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题目大意: 给你n个点,点与点之间由有向边相连.如果u能到达v的话,那么他们就不能同 ...
- 2018.08.20 bzoj1143: [CTSC2008]祭祀river(最长反链)
传送门 一道简单的求最长反链. 反链简单来说就是一个点集,里面任选两个点u,v都保证从u出发到不了v且v出发到不了u. 链简单来说就是一个点集,里面任选两个点u,v都保证从u出发可以到达v或者v出发可 ...
- 【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river
Dilworth定理,将最长反链转化为最小链覆盖.//貌似还能把最长上升子序列转化为不上升子序列的个数? floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖.(引用:这样其实就是相 ...
随机推荐
- JAVA_SE基础——4.path的临时配置&Classpath的配置
这次,我来写下关于path的临时配置的心的 我来说个有可能的实例:如果你去到别人的电脑 又想写代码 又不想改乱别人的path配置的话 再说别人愿意你在别人的电脑上瞎配吗? 那该怎么办呢? 那没问题 ...
- Jenkins中展示HTML测试报告
背景:测试报告是用reportNG生成的,属于java自动化测试项目. 1) 安装插件 首先要安装HTML Publisher plugin,这个在插件管理里面搜索并安装即可,如下我已 ...
- 超简单的jQuery前台分页,不需导包
今天我们介绍一个不需要导分页包的,非常容易上手的分页+模糊查询功能.接下来先介绍分页功能: 首先第一步,你要有个要去分页的列表.我这里敲了个简单的图书管理,作为展示的基础,它的列表为异步提交,由两部分 ...
- spring3——IOC之基于XML的依赖注入(DI )
我们知道spring容器的作用是负责对象的创建和对象间关系的维护,在上一篇博客中我们讲到spring容器会先调用对象的无参构造方法创建一个空值对象,那么接下来容器就会对对象的属性进行初始化,这个初始化 ...
- python github
git 1. 版本控制 是否依稀记得你的毕业论文? 1 2 3 4 5 6 7 8 9 10 11 毕业论文_初稿.doc 毕业论文_修改1.doc 毕业论文_修改2.doc 毕业论文_修改3.doc ...
- Win10系统Python虚拟环境安装
1.安装virtualenv 若要使用python虚拟环境进行开发,首先需要安装virtualenv. 命令:pip install virtualenv 2.安装虚拟环境 命令:virtualenv ...
- Struts(十):OGNL表达式(一)
Struts2 用s:porperty标签和OGNL表达式来读取值栈中的属性值: I.值栈中的属性值: 1.对象栈:读取对象栈中的某一个对象的属性值: 2.Map栈 :request,session, ...
- 【转载】C++基本功和 Design Pattern系列 ctor & dtor
最近实在是太忙了,无工夫写呀.只能慢慢来了.呵呵,今天Aear讲的是class.ctor 也就是constructor, 和 class.dtor, destructor. 相信大家都知道const ...
- https原理通俗了解
摘要:本文尝试一步步还原HTTPS的设计过程,以理解为什么HTTPS最终会是这副模样.但是这并不代表HTTPS的真实设计过程.在阅读本文时,你可以尝试放下已有的对HTTPS的理解,这样更利于" ...
- javaScript系列 [04]-javaScript的原型链
[04]-javaScript的原型链 本文旨在花很少的篇幅讲清楚JavaScript语言中的原型链结构,很多朋友认为JavaScript中的原型链复杂难懂,其实不然,它们就像树上的一串猴子. 1.1 ...