poj 3070 Fibonacci 矩阵快速幂
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix.
.
题解:
按题目要求很容易写出矩阵
F[n] 0 1 1
F[n-1] 0 1 0
直接上矩阵快速幂即可
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
typedef long long ll;
const int mod=;
int n;
struct matrix
{
ll a[][];
matrix(){for(int i=;i<=;i++)for(int j=;j<=;j++)a[i][j]=;}
matrix(ll b[][]){for(int i=;i<=;i++)for(int j=;j<=;j++)a[i][j]=b[i][j];}
inline matrix operator *(matrix p){
matrix tmp;
for(int i=;i<=;i++)
for(int j=;j<=;j++){
tmp.a[i][j]=;
for(int k=;k<=;k++)
tmp.a[i][j]+=a[i][k]*p.a[k][j],tmp.a[i][j]%=mod;
}
return tmp;
}
};
ll work(){
if(n==)return ;
if(n==||n==)return ;
n-=;
ll t[][]={{,,},{,,},{,,}};ll sum[][]={{,,},{,,},{,,}};
matrix S=matrix(t),T=matrix(sum);
while(n){
if(n&)S=S*T;
T=T*T;n>>=;
}
return S.a[][];
}
int main()
{
while(scanf("%d",&n))
{
if(n==-)break;
printf("%lld\n",work());
}
return ;
}
poj 3070 Fibonacci 矩阵快速幂的更多相关文章
- poj 3070 Fibonacci (矩阵快速幂乘/模板)
题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...
- POJ 3070 Fibonacci 矩阵快速幂模板
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18607 Accepted: 12920 Descr ...
- POJ 3070 Fibonacci矩阵快速幂 --斐波那契
题意: 求出斐波那契数列的第n项的后四位数字 思路:f[n]=f[n-1]+f[n-2]递推可得二阶行列式,求第n项则是这个矩阵的n次幂,所以有矩阵快速幂模板,二阶行列式相乘, sum[ i ] [ ...
- HDU 1588 Gauss Fibonacci(矩阵快速幂)
Gauss Fibonacci Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- POJ——3070Fibonacci(矩阵快速幂)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12329 Accepted: 8748 Descri ...
- UVA - 10229 Modular Fibonacci 矩阵快速幂
Modular Fibonacci The Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 3 ...
- POJ 3744 【矩阵快速幂优化 概率DP】
搞懂了什么是矩阵快速幂优化.... 这道题的重点不是DP. /* 题意: 小明要走某条路,按照个人兴致,向前走一步的概率是p,向前跳两步的概率是1-p,但是地上有地雷,给了地雷的x坐标,(一维),求小 ...
- poj3070 Fibonacci 矩阵快速幂
学了线代之后 终于明白了矩阵的乘法.. 于是 第一道矩阵快速幂.. 实在是太水了... 这差不多是个模板了 #include <cstdlib> #include <cstring& ...
- poj 3735 稀疏矩阵矩阵快速幂
设人数为 $n$,构造 $(n + 1) \times (n + 1)$ 的矩阵 得花生:将改行的最后一列元素 $+ 1$ \begin{gather}\begin{bmatrix}1 & 0 ...
随机推荐
- 实现mypwd
1 学习pwd命令 2 研究pwd实现需要的系统调用(man -k; grep),写出伪代码 3 实现mypwd 4 测试mypwd 提交过程博客的链接 代码如图
- 获取android项目的数据库地址或者数据库名
你不需要知道该路径.只是使用数据库,你可以将它们删除的列表. for (String databaseName : context.databaseList()) { context.deleteDa ...
- vue中一个dom元素可以绑定多个事件?
其实这个问题有多个解决方法的 这里提出两点 第一种 第二种 现在dom上绑定一个 然后在你的methods中直接调用 如果要传参数 这时候千万别忘记 原创 如需转载注明出处 谢谢
- Jenkins 安装、配置与项目新建及构建
1.Jenkins的安装与配置 1.1 java环境配置 Jenkins基于Java, Linux下安装java只要配置java环境变量即可. 首先,解压java到相应目录,我一般习惯把安装的软件放到 ...
- linux下安装redis和phpredis扩展
一.安装redis 1.下载redis-3.2.3.tar.gz wget http://download.redis.io/releases/redis-3.2.3.tar.gz 2.解压redis ...
- Python-Cpython解释器支持的进程与线程-Day9
Cpython解释器支持的进程与线程 阅读目录 一 python并发编程之多进程 1.1 multiprocessing模块介绍 1.2 Process类的介绍 1.3 Process类的使用 1.4 ...
- linux下执行java类(运行java定时器)
假如有一个定时器TimerTest.java import java.io.IOException; import java.util.Timer; public class TimerTest { ...
- javasciprt性能优化
本文主要是在我读<高性能Javascript>之后,想要记录下一些有用的优化方案,并且就我本身的一些经验,来大家一起分享下, Javascript的加载与执行 大家都知道,浏览器在解析DO ...
- Android fragment切换后onresume时报 Attempt to write to field 'int android.support.v4.app.Fragment.mNextAnim'
动态加载fragment以后,调用了remove方法移除Fragment,在返回来的时候报 Attempt to write to field 'int android.support.v4.app. ...
- CNN中减少网络的参数的三个思想
CNN中减少网络的参数的三个思想: 1) 局部连接(Local Connectivity) 2) 权值共享(Shared Weights) 3) 池化(Pooling) 局部连接 局部连接是相对于全连 ...