「LibreOJ NOIP Round #1」旅游路线
Description
T 城是一个旅游城市,具有 nnn 个景点和 mmm 条道路,所有景点编号为 1,2,...,n1,2,...,n1,2,...,n。每条道路连接这 nnn 个景区中的某两个景区,道路是单向通行的。每条道路都有一个长度。
为了方便旅游,每个景点都有一个加油站。第 iii 个景点的加油站的费用为 pip_ipi,加油量为 cic_ici。若汽车在第 iii 个景点加油,则需要花费 pip_ipi 元钱,之后车的油量将被加至油量上限与 cic_ici 中的较小值。不过如果加油前汽车油量已经不小于 cic_ici,则不能在该景点加油。
小 C 准备来到 T 城旅游。他的汽车油量上限为 CCC。旅游开始时,汽车的油量为 000。在旅游过程中:
1、当汽车油量大于 000 时,汽车可以沿从当前景区出发的任意一条道路到达另一个景点(不能只走道路的一部分),汽车油量将减少 111;
2、当汽车在景点 iii 且当前油量小于 cic_ici 时,汽车可以在当前景点加油,加油需花费 pip_ipi 元钱,这样汽车油量将变为 min{ci,C}\min{c_i,C}min{ci,C}。
一次旅游的总花费等于每次加油的花费之和,旅游的总路程等于每次经过道路的长度之和。注意多次在同一景点加油,费用也要计算多次,同样地,多次经过同一条道路,路程也要计算多次。
小 C 计划旅游 TTT 次,每次旅游前,小 C 都指定了该次旅游的起点和目标路程。由于行程不同,每次出发前带的钱也不同。为了省钱,小 C 需要在旅游前先规划好旅游路线(包括旅游的路径和加油的方案),使得从起点出发,按照该旅游路线旅游结束后总路程不小于目标路程,且剩下的钱尽可能多。请你规划最优旅游路线,计算这 TTT 次旅游每次结束后最多可以剩下多少钱。
solution
看到 \(dis>=10^9\) 和 \(n<=100\) 这种东西,要想到倍增Floyed,首先要发现我们不能把油记录在dp状态里面否则开不下,我们考虑枚举加油位置.
我们定义 \(dp[i][j]\) 表示从 \(i\)出发,在j加满油,花费 \(j\) 元钱可以走的最大距离,答案就是满足 \(dp[i][j]>=d\) 的最大j,所以我们要想办法预处理出这个,然后询问就可以快速回答了,\(dp[i][j]=Max(dp[k][j-p[i]]+dis[j][k])\),\(dis[i][j]\) 表示从 \(i\) 出发达到 \(j\),经过道路数不超过 \(Min(c[i],C)\) 的最长距离,可以倍增Floyd预处理出来,然后dp数组具有二分性,可以二分回答询问,但是我爆枚也过了,最坏10^9,常数太小了,哎...
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
#include<cstring>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define RG register
using namespace std;
typedef long long ll;
const int N=105,M=2005;
const ll inf=2e15;
int n,m,C,T,p[N],c[N];ll w[N][N][20];
ll f[N],g[N],dis[N][N],dp[N][N*N];
void work()
{
scanf("%d%d%d%d",&n,&m,&C,&T);
for(int i=1;i<=n;i++){
scanf("%d%d",&p[i],&c[i]);
if(c[i]>C)c[i]=C;
}
int x,y,z;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=0;k<=18;k++)
w[i][j][k]=-inf;
for(int i=1;i<=n;i++)w[i][i][0]=0;
for(int i=1;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
w[x][y][0]=Max(w[x][y][0],z);
}
for(int k=1;k<=18;k++)
for(int l=1;l<=n;l++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
w[i][j][k]=Max(w[i][j][k],w[i][l][k-1]+w[l][j][k-1]);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
g[j]=(i==j?0:-inf),f[j]=-inf;
for(int k=18;k>=0;k--){
if(((1<<k)&c[i])==0)continue;
for(int j=1;j<=n;j++){
for(int l=1;l<=n;l++)
f[j]=Max(f[j],g[l]+w[l][j][k]);
}
for(int j=1;j<=n;j++)g[j]=f[j];
}
for(int j=1;j<=n;j++)dis[i][j]=g[j];
}
int lim=n*n;
for(int k=0;k<=lim;k++){
for(int i=1;i<=n;i++){
if(k<p[i])continue;
for(int j=1;j<=n;j++)
dp[i][k]=Max(dp[i][k],dp[j][k-p[i]]+dis[i][j]);
}
}
while(T--){
scanf("%d%d%d",&x,&y,&z);
int ans=y+1;
for(int i=0;i<=y;i++){
if(dp[x][i]>=z){ans=i;break;}
}
printf("%d\n",y-ans);
}
}
int main()
{
freopen("trip.in","r",stdin);
freopen("trip.out","w",stdout);
work();
return 0;
}
「LibreOJ NOIP Round #1」旅游路线的更多相关文章
- LibreOJ #539. 「LibreOJ NOIP Round #1」旅游路线(倍增+二分)
哎一开始看错题了啊T T...最近状态一直不对...最近很多傻逼题都不会写了T T 考虑距离较大肯定不能塞进状态...钱数<=n^2能够承受, 油量再塞就不行了...显然可以预处理出点i到j走c ...
- 【LibreOJ】#539. 「LibreOJ NOIP Round #1」旅游路线
[题意]给定正边权有向图,车油量上限C,每个点可以花费pi加油至min(C,ci),走一条边油-1,T次询问s点出发带钱q,旅行路程至少为d的最多剩余钱数. n<=100,m<=1000, ...
- LOJ#539. 「LibreOJ NOIP Round #1」旅游路线
n<=100,m<=1000的图,在此图上用油箱容量C<=1e5的车来旅行,旅行时,走一条边会耗一单伟油,在点i时,若油量<ci,则可以把油以pi的价格补到ci,pi<= ...
- LOJ #539. 「LibreOJ NOIP Round #1」旅游路线 倍增floyd + 思维
考试的时候是这么想的: 求出每一个点花掉 $i$ 的花费向其他点尽可能走的最长距离,然后二分这个花费,找到第一个大于 $d$ 的就输出$.$然而,我这个记忆化搜索 $TLE$ 的很惨$.$这里讲一下正 ...
- 「LOJ 539」「LibreOJ NOIP Round #1」旅游路线
description 题面较长,这里给出题目链接 solution 考虑预处理出\(f[i][j]\)表示在第\(i\)个点加满油后,从第\(i\)个点出发,至多消耗\(j\)元钱走过的最大路程,那 ...
- LibreOj #539. 「LibreOJ NOIP Round #1」旅游路线
题目链接 做完这道题,我深知当一个问题复杂度过高的时候,把一些可以分离的操作都分散开,可以大幅度降低复杂度..... 发现无论有多少钱,每到一个点后扩展到的距离被限制在 \(min(C, c[i])\ ...
- 【LibreOJ】#538. 「LibreOJ NOIP Round #1」数列递推
[题意]LibreOJ [算法]乱搞 [题解]容易发现数列最后一定单调,最后单调递增则最大值赋为最后一个,反之最小值赋为最后一个,然后处理一些细节就可以AC,要注意以下几点: 1.数列连续三项以及数列 ...
- 题解【loj537】「LibreOJ NOIP Round #1」DNA 序列
题目描述 \(NOIP\)复赛之前\(HSD\)桑进行了一项研究,发现人某条染色体上的一段\(DNA\)序列中连续的\(k\)个碱基组成的碱基序列与做题的 \(AC\) 率有关!于是他想研究一下这种关 ...
- 「LOJ 537」「LibreOJ NOIP Round #1」DNA 序列
description NOIP 复赛之前,HSD 桑进行了一项研究,发现人某条染色体上的一段 DNA 序列中连续的\(k\)个碱基组成的碱基序列与做题的 AC 率有关!于是他想研究一下这种关系. 现 ...
随机推荐
- TensorFlow问题“The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.”
出现的问题: 在使用TensorFlow跑官方教程例子时报以下warning: 虽程序能正常跑出结果,但作为一名强迫症患者对此很是不爽,于是查找资料找到隐藏该warning的解决办法. 解决办法: 在 ...
- Flask 学习 十三 应用编程接口
最近这些年,REST已经成为web services和APIs的标准架构,很多APP的架构基本上是使用RESTful的形式了. REST的六个特性: 客户端-服务器(Client-Server)服务器 ...
- raid5 / raid5e / raid5ee的性能对比及其数据恢复原理
RAID 5 是一种存储性能.数据安全和存储成本兼顾的存储解决方案. RAID 5可以理解为是RAID 0和RAID 1的折中方案.RAID 5可以为系统提供数据安全保障,但保障程度要比Mirror低 ...
- $(function(){})和window.onload的区别
(1)$(function(){}):DOM节点创建 完成才执行 (2)window.onload:页面所有资源(JS/CSS)加载完成才执行
- JAVA_SE基础——59.权限访问修饰符
了解了包的概念,就可以系统的介绍Java中的访问控制级别.在Java中,针对类.成员方法和属性提供了四种访问级别,分别是private.default.protected和public. 权限访问修饰 ...
- Mybatis学习日志
在Mybatis深入学习的一周中,总感觉跟着师傅的视屏讲解什么都能懂,但实际自己操作的时候才发现自己一脸懵逼,不知道从何入手.但还好自己做了点笔记.在此记录一下自己浅度学习Mybatis遇到几个小问题 ...
- 关于团购VPS的事情报告
作者 玄魂 2017-08-11 玄魂工作室-玄魂 玄魂工作室首先要抱歉,之前的说的继续组织大家购买vps的事情,不会再组织了.原因有以下几个:1)因为人多,需求各不相同,不好协调.2)服务都是购 ...
- ASP.NET MVC 5 SmartCode Scaffolding for Visual Studio.Net
介绍 ASP.NET MVC 5 SmartCode Scaffolding是集成在Visual Studio.Net开发工具中一个ASP.NET MVC Web应用程序代码生成框架,使用SmartC ...
- hadoop大数据技术架构详解
大数据的时代已经来了,信息的爆炸式增长使得越来越多的行业面临这大量数据需要存储和分析的挑战.Hadoop作为一个开源的分布式并行处理平台,以其高拓展.高效率.高可靠等优点越来越受到欢迎.这同时也带动了 ...
- istio入门(05)istio的架构概念2