题目链接:http://poj.org/problem?id=2635

题目分析:

  http://blog.csdn.net/lyy289065406/article/details/6648530

POJ2635-The Embarrassed Cryptographer 大数求余的更多相关文章

  1. (POJ2635)The Embarrassed Cryptographer(大数取模)

    The Embarrassed Cryptographer Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13041 Accep ...

  2. POJ 2635 The Embarrassed Cryptographer(大数求余)

    题意:给出一个大数,这个大数由两个素数相乘得到,让我们判断是否其中一个素数比L要小,如果两个都小,输出较小的那个. 分析:大数求余的方法:针对题目中的样例,143 11,我们可以这样算,1 % 11 ...

  3. [ACM] POJ 2635 The Embarrassed Cryptographer (同余定理,素数打表)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11978   A ...

  4. POJ2635——The Embarrassed Cryptographer(高精度取模+筛选取素数)

    The Embarrassed Cryptographer DescriptionThe young and very promising cryptographer Odd Even has imp ...

  5. poj2635The Embarrassed Cryptographer(同余膜定理)

    The Embarrassed Cryptographer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15069   A ...

  6. POJ 2635 The Embarrassed Cryptographer 大数模

    题目: http://poj.org/problem?id=2635 利用同余模定理大数拆分取模,但是耗时,需要转化为高进制,这样位数少,循环少,这里转化为1000进制的,如果转化为10000进制,需 ...

  7. Project Euler 48 Self powers( 大数求余 )

    题意: 项的自幂级数求和为 11 + 22 + 33 + - + 1010 = 10405071317. 求如下一千项的自幂级数求和的最后10位数字:11 + 22 + 33 + - + 100010 ...

  8. (大数 求余) Large Division Light OJ 1214

    Large Division Given two integers, a and b, you should check whether a is divisible by b or not. We ...

  9. Large Division (大数求余)

    Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...

随机推荐

  1. Unity 3D Framework Designing(7)——IoC工厂理念先行

    一谈到 『IoC』,有经验的程序员马上会联想到控制反转,将创建对象的责任反转给工厂.IoC是依赖注入 『DI』 的核心,大名鼎鼎的Spring框架就是一个非常卓越的的控制反转.依赖注入框架.遗憾的是, ...

  2. 用Caffe生成对抗样本

    同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/26122612 上篇文章 瞎谈CNN:通过优化求解输入图像 - 知乎专栏 中提到过对抗样本,这篇算是针对对抗样本的一个小 ...

  3. 老李推荐:第14章1节《MonkeyRunner源码剖析》 HierarchyViewer实现原理-面向控件编程VS面向坐标编程

    老李推荐:第14章1节<MonkeyRunner源码剖析> HierarchyViewer实现原理-面向控件编程VS面向坐标编程   poptest是国内唯一一家培养测试开发工程师的培训机 ...

  4. Hibernate(三)之配置文件详解

    一.核心配置文件(hibernate.cfg.xml) <?xml version="1.0" encoding="UTF-8"?> <!DO ...

  5. 《Python基础教程》第2章读书笔记(1)

    # -*- coding:utf-8 -*- #最基本的数据结构:序列,索引从0开始 #python包括6种内建的序列 #最常用的序列包括:列表,元祖 #列表 edward = ['Edward Gu ...

  6. mysql自动备份删除5天前的备份

    1.查看磁盘空间情况: # df -h 2.创建备份目录: 上面我们使用命令看出/home下空间比较充足,所以可以考虑在/home保存备份文件: cd /home mkdir backup cd ba ...

  7. 通过UDP广播实现Android局域网Peer Discovering

    本文是对个人笔记中内容的整理,部分代码及图片来自互联网,由于不好找到原始出处,所以未加注明. 如有痛感,联系删除. 本文将介绍以下知识点: TCP与UDP的区别: 单播.多播.广播: Java中实现U ...

  8. 学习MVC之租房网站(二)-框架搭建及准备工作

    在上一篇<学习MVC之租房网站(一)-项目概况>中,确定了UI+Service的“双层”架构,并据此建立了项目 接下来要编写Common类库.配置AdminWeb和FrontWeb 一.编 ...

  9. 网站与域名知识扫盲-DNS

    域名概述 域名的概念 IP地址不易记忆 早期使用Hosts解析域名 主机名称重复 主机维护困难 DNS(Domain Name System 域名系统) 分布式 层次性 域名空间结构 根域 组织域[. ...

  10. 时间同步方法及几个可用的NTP服务器地址

    大家都知道计算机电脑的时间是由一块电池供电保持的,而且准确度比较差经常出现走时不准的时候.通过互联网络上发布的一些公用网络时间服务器NTP server,就可以实现自动.定期的同步本机标准时间. 依靠 ...