题目链接:http://poj.org/problem?id=1151

很经典的题目,网上有很多模板代码,自己理解了一天,然后很容易就敲出来了。。。

代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#define maxn 110
using namespace std;
int n;
class node
{
public:
int l,r;//端点坐标的映射值(整数值)
double cnt;
double c;
double lf,rf;//实际的端点坐标
};
node segTree[maxn*];
class Line
{
public:
double x;
double y1;
double y2;
double f;//f=1表示左边,f=-1表示矩形的右边
};
Line line[maxn];
double y[maxn];
bool cmp(Line a, Line b)
{
return a.x < b.x;
}
void Build(int num, int l, int r)
{
segTree[num].l=l;
segTree[num].r=r;
segTree[num].cnt=segTree[num].c=;
segTree[num].lf=y[l];
segTree[num].rf=y[r];
if(l+==r) return ;
int mid=(l+r)/;
Build(num*,l,mid);
Build(num*+,mid,r);
}
void calen(int num)//计算边的有效长度
{
if(segTree[num].c > ) //表示当前边为直接有效部分 cnt存边的长度
{
segTree[num].cnt=segTree[num].rf-segTree[num].lf;
return ;
}
else//如果当前边不是直接有效部分 可以理解为当前边已经不存在
{
if(segTree[num].l+ ==segTree[num].r) //如果当前边为最小的单元(就是没有孩子了),那么其间接有效长度为0
{
segTree[num].cnt=;
}
else//否则其有效长度为孩子的有效长度和
{
segTree[num].cnt=segTree[num*].cnt+segTree[num*+].cnt;
return ;
} }
}
void Update(int num,Line e)
{
if(segTree[num].lf== e.y1 && segTree[num].rf ==e.y2)
{
segTree[num].c+=e.f;
calen(num);
return ;
}
if(segTree[num*].rf>=e.y2) Update(num*,e);
else
if(segTree[num*+].lf<=e.y1) Update(num*+,e);
else
{
Line tmp=e;
tmp.y2=segTree[num*].rf;
Update(num*,tmp);
tmp=e;
tmp.y1=segTree[num*+].lf;
Update(num*+,tmp);
}
calen(num);
}
int main()
{
int iCase=;
double x1,x2,y1,y2;
while(scanf("%d",&n)!=EOF && n)
{
int t=;
for(int i=;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
line[t].x=x1;
line[t].y1=y1;
line[t].y2=y2;
line[t].f=;
y[t]=y1;
t++;
line[t].x=x2;
line[t].y1=y1;
line[t].y2=y2;
line[t].f=-;
y[t]=y2;
t++;
}
sort(y+,y+t);
sort(line+,line+t,cmp);
Build(,,t-);
Update(,line[]);
double ans=;
for(int i=;i<t;i++)
{
ans+=segTree[].cnt*(line[i].x- line[i-].x);
Update(,line[i]);
//segTree[1].cnt是位于坐标line[i-1].x的最终的有效边长
}
printf("Test case #%d\nTotal explored area: %.2f\n\n",iCase++,ans); } return ;
}

poj1151 Atlanis 线段树+离散化求矩形面积的并的更多相关文章

  1. 【HDU 1542】Atlantis(线段树+离散化,矩形面积并)

    求矩形面积并,离散化加线段树. 扫描线法: 用平行x轴的直线扫,每次ans+=(下一个高度-当前高度)*当前覆盖的宽度. #include<algorithm> #include<c ...

  2. 扫描线 + 线段树 : 求矩形面积的并 ---- hnu : 12884 Area Coverage

    Area Coverage Time Limit: 10000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit user ...

  3. 2015 UESTC 数据结构专题E题 秋实大哥与家 线段树扫描线求矩形面积交

    E - 秋实大哥与家 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/contest/show/59 De ...

  4. hdu1542 线段树扫描线求矩形面积的并

    题意:       给你n个正方形,求出他们的所占面积有多大,重叠的部分只能算一次. 思路:       自己的第一道线段树扫描线题目,至于扫描线,最近会写一个总结,现在就不直接在这里写了,说下我的方 ...

  5. hdu 1542&&poj 1151 Atlantis[线段树+扫描线求矩形面积的并]

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  6. HDU 1542"Atlantis"(线段树+扫描线求矩形面积并)

    传送门 •题意 给你 n 矩形,每个矩形给出你 $(x_1,y_1),(x_2,y_2)$ 分别表示这个矩形的左下角和右上角坐标: 让你求这 n 个矩形并的面积: 其中 $x \leq 10^{5} ...

  7. hdu1828 线段树扫描线求矩形面积的周长

    题意:       给你n个矩形,问你这n个矩形所围成的图形的周长是多少. 思路:       线段树的扫描线简单应用,这个题目我用的方法比较笨,就是扫描两次,上下扫描,求出多边形的上下边长和,然后同 ...

  8. hdu1255 覆盖的面积 线段树+里离散化求矩形面积的交

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 求矩形面积的交的线段树题目,刚做了求并的题目,再做这个刚觉良好啊,只要再加一个表示覆盖次数大于1 ...

  9. HDU 1828“Picture”(线段树+扫描线求矩形周长并)

    传送门 •参考资料 [1]:算法总结:[线段树+扫描线]&矩形覆盖求面积/周长问题(HDU 1542/HDU 1828) •题意 给你 n 个矩形,求矩形并的周长: •题解1(两次扫描线) 周 ...

随机推荐

  1. CSS媒体查询适配范例

    /*orientation:portrait纵向*/ /*orientation:landscape横向*/ /*iPhone 4*/ @media only screen and (min-devi ...

  2. 关于微信小程序图片失真的解决方案

    今天来说一说 关于微信小程序的图片失真问题的解决,微信小程序的image标签要设置其宽高,不然图片若宽高过大会撑开原始图片大小的区域:如下 但是宽高设置固定了会导致有些图片和规定显示图片大小的比例不一 ...

  3. a里面不能嵌套a

    1. <a href=""> <a href=""></a></a> 会被浏览器解析为 2. <a hre ...

  4. 百度cdn资源公共库共享及常用开发接口

    CDN公共库是指将常用的JS库存放在CDN节点,以方便广大开发者直接调用 网站:http://cdn.code.baidu.com/ 常用资源: jquery: http://libs.baidu.c ...

  5. python实现mysql的读写分离及负载均衡

    Oracle数据库有其公司开发的配套rac来实现负载均衡,目前已知的最大节点数能到128个,但是其带来的维护成本无疑是很高的,并且rac的稳定性也并不是特别理想,尤其是节点很多的时候. 但是,相对my ...

  6. php+ajax+jq

    <html> <head> <meta charset="UTF-8"> <title>JQueryAjax+PHP</tit ...

  7. 简单 fibonacci 函数

    public static int fibonacci(int n){  if(n<=1) return 1;  else {     return fibonacci(n-1)+fibonac ...

  8. javascript核心概念——new

    如果完全没有编程经验的朋友看到这个词会想到什么? 上过幼儿园的都知道new表示 "新的" 的意思. var a = new Date() 按照字面的意思表示什么? 把一个新的dat ...

  9. 第一章 自定义MVC框架

    第一章  自定义MVC框架1.1 MVC模式设计    组成:Model:模型,用于数据和业务的处理          View :视图,用于数据的显示          Controller:控制器 ...

  10. C 语言实现字符串替换

    void replaceFirst(char *str1,char *str2,char *str3) { ]; char *p; strcpy(str4,str1); if((p=strstr(st ...