题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497

GCD and LCM

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 2151    Accepted Submission(s): 955

Problem Description
Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L? 
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z. 
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
 
Input
First line comes an integer T (T <= 12), telling the number of test cases. 
The next T lines, each contains two positive 32-bit signed integers, G and L. 
It’s guaranteed that each answer will fit in a 32-bit signed integer.
 
Output
For each test case, print one line with the number of solutions satisfying the conditions above.
 
Sample Input
2
6 72
7 33
 
Sample Output
72
0
 
Source
题意:给出三个数的最大公约数和最小公倍数,让求abc这三个数可能的情况,注意ABC的位置不同算不同的情况
考虑先分解最小公倍数。合数分解后,再分解最大公约数,可知,如果最大公约数中有最小公倍数中没有的质因数因子的话,那么答案肯定为0
然后考虑每一个因子pi有设合数分解最小公倍数的个数为bi合数分解最大公约数的个数为bi
下面有两种考虑方法
  排列组合:易得三个数中的对于pi的情况必须有一个个数是bi,另一个是ai,然后就可以先选出两个位置一个bi一个ai然后最后一个位置上的个数一定介于ai和bi之间即(bi-ai-1)种情况。
所以最后的公式为ans *=  A(3,2)*(bi-ai-1) = 6*(bi-ai-1) ;
注意,如果先筛素数的时候筛到1^6 然后如果L除以最后一个素数的时候不等于1,那么说明它(L的最后一个因子)一定是大于10^6的一个素数,因为10^12 = 10^6^2 > x^2>y;如果y存在一个非素数的因子k的话,有k*t = y 且k>x,则t<x则t已经被筛掉了。所以剩下的因子一定是素因子。一开始没有考虑这种特殊情况wa掉了。。。
注意,还要注意只有当(bi-ai-1) 有意义的时候才可以计算,因为如果bi==ai的时候可以发现正确结果是对于这一位应该是只用一种情况,就是三个数都相等,所以要特判一下。。。。后来又因为这个wa了一次~~~~(>_<)~~~~
  容斥定理:同样是考虑每个因子,有所有的情况是每个位置都可以取(bi-ai+1)种情况即(bi-ai+1)^3,要减去没有bi个因子的情况和没有ai个因子的情况即2*(bi-ai)^3
然后发现减多了,要加上同时没有因子ai和bi的情况即(bi-ai-1)^3
这里同样要注意上面的注意。
 //合数分解
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
const int maxn = ;
int prime[maxn];
bool pri[maxn];
int cnt;
void init()
{
cnt = ;
pri[] = pri[] = ;
//prime[0] = 2;
for(int i = ; i < maxn; i++){
if(!pri[i]){ prime[cnt++] = i;
for(int j = i+i; j < maxn; j+=i)
{
pri[j]=;
}
}
}
return;
}
ll m1[],m2[];
ll c1[],c2[];
int main()
{
init();
int T;
ll G,L;
scanf("%d",&T);
while(T--)
{
memset(m1,,sizeof(m1));
memset(c1,,sizeof(c1));
memset(m2,,sizeof(m2));
memset(c2,,sizeof(c2));
scanf("%lld%lld",&G,&L);
int tm = ;
bool in = ;
bool fl = ;
//printf("%d\n",prime[1]);
if(L%G) fl = ;
for(int i = ; i< cnt; i++){
while(prime[i]<=L&&L%prime[i]==){
L = L/prime[i];
m2[tm] = prime[i];
c2[tm]++;
in = ;
}
if(in) tm++;
in = ;
}
if(L!=){
m2[tm] = L;
c2[tm] = ;
tm++;
}
for(int i = ; i < tm; i++){
while(m2[i]<=G&&G%m2[i]==){
G = G/m2[i];
m1[i] = m2[i];
c1[i]++;
}
in = ;
}
if(G!=){
fl = ;
}
/*puts("haha");
for(int i = 0; i < tm; i++){
printf("m1[%d]=%d; m2[%d]=%d;\n",i,m1[i],i,m2[i]);
printf("c1[%d]=%d; c2[%d]=%d;\n",i,c1[i],i,c2[i]);
}
*/
if(fl==) {puts(""); continue;}
ll ans = ;
for(int i = ; i < tm; i++){
//需要特判当c1[i] =c2[i]的情况
ll E;
if(c1[i]==c2[i]) E = ;
else E = c2[i]-c1[i]-;
/*
也可以用排列组合的想法,每次找到两个数包含首尾的两个值,然后中间的一个在从所有可能中选取一个。
这样最后的公式就是A(3,2)*(c2[i]-c1[i]-1);
所以
if(c2[i]>c1[i]) ans = ans*6*(c2[i]-c1[i]-1);
*/
ans = ans*((c2[i]-c1[i]+)*(c2[i]-c1[i]+)*(c2[i]-c1[i]+)-*(c2[i]-c1[i])*(c2[i]-c1[i])*(c2[i]-c1[i])+E*E*E);
}
printf("%lld\n",ans);
}
return ;
}

hdu_4497GCD and LCM(合数分解)的更多相关文章

  1. LightOJ 1236 Pairs Forming LCM 合数分解

    题意:求所有小于等于n的,x,y&&lcm(x,y)==n的个数 分析:因为n是最小公倍数,所以x,y都是n的因子,而且满足这样的因子必须保证互质,由于n=1e14,所以最多大概在2^ ...

  2. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  3. HDU 4610 Cards (合数分解,枚举)

    Cards Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  4. hdu 5317 合数分解+预处理

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  5. hdu 4777 树状数组+合数分解

    Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. Perfect Pth Powers pku-1730(筛+合数分解)

    题意:x可以表示为bp, 求这个p的最大值,比如 25=52, 64=26,  然后输入x 输出 p 就是一个质因子分解.算法.(表示数据上卡了2个小时.) 合数质因子分解模板. ]; ]; ; ;n ...

  7. pku1365 Prime Land (数论,合数分解模板)

    题意:给你一个个数对a, b 表示ab这样的每个数相乘的一个数n,求n-1的质数因子并且每个指数因子k所对应的次数 h. 先把合数分解模板乖乖放上: ; ans != ; ++i) { ) { num ...

  8. UVA 10791 Minimum Sum LCM(分解质因数)

    最大公倍数的最小和 题意: 给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 那么找出一个序列,使他们的和最小. 分析: 一系列数字a1,a2,a3 ...

  9. hdu4497 GCD and LCM ——素数分解+计数

    link:http://acm.hdu.edu.cn/showproblem.php?pid=4497 如果G%L != 0,说明一定无解. 把K = G / L质数分解,G / L = p1^t1 ...

随机推荐

  1. Python2/3的中、英文字符编码与解码输出: UnicodeDecodeError: 'ascii' codec can't decode/encode

    摘要:Python中文虐我千百遍,我待Python如初恋.本文主要介绍在Python2/3交互模式下,通过对中文.英文的处理输出,理解Python的字符编码与解码问题(以点破面). 前言:字符串的编码 ...

  2. nginx编译参数的内容

    最近公司安排我安装几台云服务器环境 采用nginx做反向代理: 查了一下官方文档,参数比较多,很多在上线后 可能才知道注意一下的. 编译安装nginx的话 需要安装一些前置组件: 1.gcc环境:用于 ...

  3. JSP和JavaBean总结

    JSP JSP全名为Java Server Pages,即java服务器页面,其根本是一个简化的Servlet设计.它是在传统的网页HTML文件中插入Java代码,从而形成JSP文件. JSP注释分为 ...

  4. C#又能出来装个B了。一步一步微信跳一跳自动外挂

    PS:语言只是载体.思维逻辑才是王道 前天看见了个python的脚本.于是装python.配置环境变量.装pip.折腾了一上午,最终装逼失败. 于是进入博客园,顶部有篇文章吸引了我 .NET开发一个微 ...

  5. js垃圾回收机制

    垃圾回收机制,简称GC(garbage collection),会定期(周期性)地回收那些不再使用的变量,然后释放其内存. 而内存占用的情况有很多: 1.变量 2.字面量对象声明:var obj = ...

  6. g4e基础篇#1 什么是版本控制系统

    g4e 是 Git for Enterprise Developer的简写,这个系列文章会统一使用g4e作为标识,便于大家查看和搜索. 章节目录 前言 1. 基础篇: 为什么要使用版本控制系统 Git ...

  7. vue2.0父子组件以及非父子组件如何通信

    1.父组件传递数据给子组件 父组件数据如何传递给子组件呢?可以通过props属性来实现 父组件: <parent> <child :child-msg="msg" ...

  8. C# Log4net记录日志

    前言 1.需求 需求很简单,就是在C#开发中高速写日志.比如在高并发,高流量的地方需要写日志.我们知道程序在操作磁盘时是比较耗时的,所以我们把日志写到磁盘上会有一定的时间耗在上面,这些并不是我们想看到 ...

  9. react看这篇就够了(react+webpack+redux+reactRouter+sass)

    本帖将对一下内容进行分享: 1.webpack环境搭建: 2.如何使用react-router: 3.引入sass预编译: 4.react 性能优化方案: 5.redux结合react使用: 6.fe ...

  10. 深入C#.NET数据类型

    深入C#数据类型 --不同类型的参数传递使用值传递,在方法中对参数的更改在调用后不能保留.使用ref方式传递,可以保留对参数值的更改. ---值方式参数传递和引用方式传递使用值方式(不用ref修饰)传 ...