Beyond Globally Optimal: Focused Learning
这里对WWW 2017文章《Beyond Globally Optimal: Focused Learning for Improved Recommendations》进行一个简单的分析解读。
文章亮点:
作者群来自Google和Pinterest
第一次系统性的解释了为什么用全局模型可能会在局部数据上表现不好
文章提出了简单易行的解决办法,可以让全局模型在局部数据上依然能够达到最优
文章很全面得在一些数据及上进行了比较完整的比较
这篇文章来自一群前CMU的学者,目前在Google和Pinterest。那么这篇文章试图解决什么问题呢?具体说来,就是作者们发现,传统的推荐系统,基于优化一个全局的目标函数,通常情况下往往只能给出一个非常有“偏差”(Skewed)的预测分布。也就是说,传统的推荐系统追求的是平均表现情况,在很多情况下的预测其实是十分不准确的。这个情况在评价指标是Root Mean Squared Error(RMSE)的时候,就显得尤为明显。
这篇文章的作者是这么定义了一个叫做Focused Learning的问题,那就是如果让模型在一个局部的数据上能够表现出色。那么,为什么需要模型在一个局部的数据上表现出色呢?作者们做了这么一件事情,那就是对每个用户,以及每一个物品的预测误差(Error)进行了分析统计,发现有不小比例的用户的预测误差比较大,也有不小比例的物品的预测误差比较大。作者们发现模型在一些数据上存在着系统性的误差较大的问题,而不是偶然发生的情况。
作者们又从理论上进行了对这个问题一番讨论。这里的讨论十分巧妙,大概的思路就是,假定现在在全局最优的情况下,模型的参数的梯度已经为0了,但模型的Loss依然不为0(这种情况很常见)。那么,就一定存在部分数据的参数梯度不为0,因为某一部分数据的Loss不为0。这也就证明了部分数据的模型参数在这些数据上的表现一定不是最优的。值得注意的是,这个证明非常普遍,和具体的模型是什么类型没有关系。
在有了这么一番讨论之后,那么作者们如何解决这个问题呢?这篇文章走了Hyper-parameter Optimization的道路。文章展示了这在普通的Matrix Factorization里面是如何做到。具体说来,就是对于某个Focused Set做Hyper-parameter的调优,使得当前的Hyper-parameter能够在Focused Set上能够有最好表现。而这组参数自然是针对不同的Focused Set有不同的选择。文章提到的另外一个思路,则是对Focused Set以及非Focused Set的Hyper-parameter进行区分对待,这样有助于最后的模型能够有一个比较Flexible的表达。
文章在实验的部分针对几种不同的Focused Set进行了比较实验。比如,针对Cold-Start的物品,针对Outlier的物品,以及更加复杂的libFM模型都进行了实验。我们在这里就不去复述了。总体来说,Focused Learning在不同的数据集上都得到了比较好的提升效果。同时,作者们还针对为什么Focused Learning能够Work进行了一番探讨,总体看来,Focused Learning既照顾了Global的信息,同时又通过附加的Hyper-parameter调优对某一个局部的数据进行优化,所以往往好于Global的模型以及也好于单独的Local模型。
Beyond Globally Optimal: Focused Learning的更多相关文章
- Machine and Deep Learning with Python
Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstiti ...
- Learning Query and Document Similarities from Click-through Bipartite Graph with Metadata
读了一篇paper,MSRA的Wei Wu的一篇<Learning Query and Document Similarities from Click-through Bipartite Gr ...
- an optimal solution to the problem
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm Greedy Introdu ...
- 论文解读(GraphDA)《Data Augmentation for Deep Graph Learning: A Survey》
论文信息 论文标题:Data Augmentation for Deep Graph Learning: A Survey论文作者:Kaize Ding, Zhe Xu, Hanghang Tong, ...
- cvpr2015papers
@http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...
- 2016CVPR论文集
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...
- ECCV 2014 Results (16 Jun, 2014) 结果已出
Accepted Papers Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) soluti ...
- CVPR 2015 papers
CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Go ...
- 机器学习资源汇总----来自于tensorflow中文社区
新手入门完整教程进阶指南 API中文手册精华文章TF社区 INTRODUCTION 1. 新手入门 1.1. 介绍 1.2. 下载及安装 1.3. 基本用法 2. 完整教程 2.1. 总览 2.2. ...
随机推荐
- cron任务解释
cron本来是在linux下的一个定时任务执行工具,现在很多语言都支持cron,本文参考https://en.wikipedia.org/wiki/Cron,解释一下cron配置. 概述 cron配置 ...
- [LeetCode] 动态规划入门题目
最近接触了动态规划这个厉害的方法,还在慢慢地试着去了解这种思想,因此就在LeetCode上面找了几道比较简单的题目练了练手. 首先,动态规划是什么呢?很多人认为把它称作一种"算法" ...
- Python学习日记:day1
1.计算机基础 cpu:相当于人的大脑,用于计算. 内存:储存数据,运行速度快,成本高,断电数据消失. 硬盘 :固态硬盘(快).机械硬盘(有指针).储存数据,需要长期保持数据,重要文件 打开qq过程: ...
- 对Spring与SpringMVC的理解
Spring 在我的Spring --简介及环境搭建跑通Hello提到关于Spring的基本结构与功能 SpringMVC 先上一张SpringMVC的流程图 Spring MVC 是一个模型 - 视 ...
- 链表创建和链表遍历算法的演示_C语言
今天搞了一个多小时,头是疼的,应该是没休息好吧,学习了数据结构这一节,感觉收益良多,下面贴上代码和心得: /*24_链表创建和链表遍历算法的演示*/ # include <stdio.h> ...
- ArcGIS Runtime SDK是什么?
如上图,Runtime SDK是什么东西?居然还有安卓.苹果手机.Mac.QT的版本? 是不是意味着ArcGIS的编辑数据和空间分析可以通过编程的方法在每个平台上满地跑了? 答案是:是,也不是. 1. ...
- MySQL数据库学习02: SELECT语句
声明:本篇文章大多数内容出自<MySQL必知必会>,仅供学习参考,勿作他用! 第4章 检索数据 4.1 SELECT语句 SELECT子句用于检索数据库中的表数据.它几乎是MySQL中最常 ...
- Tomcat 到底依赖JRE还是JDK
Tomcat 6.0 以上可以不再依赖JDK运行,直接使用JRE即可,但Tomcat 5.5以下,是必须安装JDK的. 这主要是由于,Tomcat 5.5及以下版本主要是依赖JDK去编译JSP文件生成 ...
- Java Web高级编程(四)
WebSocket 一.WebSocket的产生 用户希望Web页面可以进行交互,用于解决这个问题的技术是JavaScript,现在Web上有许多的可用的JavaScript框架,在使用极少的Java ...
- DBA 优化法则
硬件资源是根本,DBA是为了充分利用硬件资源:(更新中--) 统一SQL语句: 减少SQL嵌套: 执行计划返回结果集(决定计划走向): 合理使用临时表: tempdb分多文件: OLTP 条件使用变量 ...