BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】
1041: [HAOI2008]圆上的整点
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 4210 Solved: 1908
[Submit][Status][Discuss]
Description
求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。
Input
只有一个正整数n,n<=2000 000 000
Output
整点个数
Sample Input
Sample Output
HINT
Source
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041
【分析】:
样例图示:
首先,最暴力的算法显而易见:枚举x轴上的每个点,带入圆的方程,检查是否算出的值是否为整点,这样的枚举量为2*N,显然过不了全点。
然后想数学方法。
有了上面的推理,那么实现的方法为:
枚举d∈[1,sqrt(2R)],然后根据上述推理可知:必先判d是否为2R的一约数。
此时d为2R的约数有两种情况:d=d或d=2R/d。
第一种情况:d=2R/d。枚举a∈[1,sqrt(2R/2d)] <由2*a*a < 2*R/d转变来>,算出对应的b=sqrt(2R/d-a^2),检查是否此时的A,B满足:A≠B且A,B互质 <根据上面的推理可知必需满足此条件>,若是就将答案加1
第二种情况:d=d。枚举a∈[1,sqrt(d/2)] <由2*a*a < d转变来>,算出对应的b=sqrt(d-a^2),检查是否此时的A,B满足:A≠B且A,B互质 <根据上面的推理可知必需满足此条件>,若是就将答案加1
因为这样只算出了第一象限的情况<上面枚举时均是从1开始枚举>,根据圆的对称性,其他象限的整点数与第一象限中的整点数相同,最后,在象限轴上的4个整点未算,加上即可,那么最后答案为ans=4*第一象限整点数+4
【时间复杂度分析】:
枚举d:O(sqrt(2R)),然后两次枚举a:O(sqrt(d/2))+O(sqrt(R/d)),求最大公约数:O(logN)
下面给出AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
inline void write(ll x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>)
{
write(x/);
}
putchar(x%+'');
}
ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
inline bool check(ll y,double x)
{
if(x==floor(x))//判断整点
{
ll x1=(ll)floor(x);
if(gcd(x1*x1,y*y)==&&x1*x1!=y*y)//gcd(A,B)==1&&A!=B
return true;
}
return false;
}
int main()
{
ll R;
R=read();
ll ans=;
for(ll d=;d<=(ll)sqrt(*R);d++)//1<=d^2<=2R
{
if((*R)%d==)
{
for(ll a=;a<=(ll)sqrt(*R/(*d));a++)//2*a^2<2*R/d
{
double b=sqrt(((*R)/d)-a*a);
if(check(a,b))
ans++;
}
if(d!=(*R)/d)
{
for(ll a=;a<=(ll)sqrt(d/);a++)//2*a^2<=d
{
double b=sqrt(d-a*a);
if(check(a,b))
ans++;
}
}
}
}
printf("%lld\n",ans*+);
return ;
}
BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】的更多相关文章
- BZOJ 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3621 Solved: 1605[Submit][Sta ...
- bzoj 1041: [HAOI2008]圆上的整点 数学
1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 853[Submit][Stat ...
- BZOJ 1041 [HAOI2008]圆上的整点:数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...
- BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...
- BZOJ(2) 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4966 Solved: 2258[Submit][Sta ...
- 1041: [HAOI2008]圆上的整点
1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4298 Solved: 1944[Submit][Sta ...
- 【BZOJ】1041: [HAOI2008]圆上的整点(几何)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1041 所谓的神题,我不会,直接题解..看了半天看懂题解了.详见hzwer博客 这题呢,我只能 ...
- 1041: [HAOI2008]圆上的整点 - BZOJ
Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数.Input rOutput 整点个数Sample Input4Sample Output4HINT n ...
随机推荐
- iOS 计时器三种定时器的用法NSTimer、CADisplayLink、GCD
原文:http://www.cocoachina.com/ios/20160919/17595.html DEMO链接
- ios 中的循环引用问题及解决
循环引用,指的是多个对象相互引用时,使得引用形成一个环形,导致外部无法真正是否掉这块环形内存.其实有点类似死锁. 举个例子:A->B->C->....->X->B - ...
- Bash shell命令记录和CentOS的一些技巧
①CentOS的实用技巧: 一.按下ctrl+alt+F2可由图形界面切换至命令行(shell窗口),按下ctrl+alt+F1可由命令行切换至图形界面(前提是安装CentOS时软件选择项选择安装了图 ...
- C:数据结构与算法之单链表
单链表相对于顺序表比较难理解,但是比较实用,单链表的插入,删除不需要移动数据元素,只需要一个指针来寻找所需要的元素,还有一个大优点就是不浪费空间,当你想要增加一个结点可以申请(malloc())一个结 ...
- 向map中追加元素
public class Demo01 { public static void main(String[] args) { String mapKey = "a"; Map< ...
- sar 命令详解
sar (System Activity Reporter)命令是LInux下系统运行状态统计工具, 它将指定的操作系统状态计数器显示到标准输出设备. sar 工具将对系统当前的状态进行取样,然后通过 ...
- inode 详解
1.inode 解析: 存储文件元信息(文件创建者,创建日期,大小等)的区域叫做inode即 索引节点. 2.inode 内容: 文件字节数.拥有者UserID,GroupID,读写执行权限,时间戳, ...
- Linux发行版 CentOS6.5下的分区操作
本文地址http://comexchan.cnblogs.com/ ,尊重知识产权,转载请注明出处,谢谢! 查询磁盘信息并作分区规划 执行下述命令查询磁盘信息: fdisk -l 可知.数据盘大小50 ...
- 微信公众号H5支付遇到的那些坑
简史 官方文档说的很清楚,商户已有H5商城网站,用户通过消息或扫描二维码在微信内打开网页时,可以调用微信支付完成下单购买的流程. 当然,最近微信支付平台也加入了纯H5支付,也就是说用户可以在微信以外的 ...
- xlwt 官网的例子
from time import * from xlwt.Workbook import * from xlwt.Style import * style = XFStyle() wb = Workb ...