1041: [HAOI2008]圆上的整点

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 4210  Solved: 1908
[Submit][Status][Discuss]

Description

求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

Input

只有一个正整数n,n<=2000 000 000

Output

整点个数

Sample Input

4

Sample Output

4

HINT

Source

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041

【分析】:

样例图示:

首先,最暴力的算法显而易见:枚举x轴上的每个点,带入圆的方程,检查是否算出的值是否为整点,这样的枚举量为2*N,显然过不了全点。

然后想数学方法。

有了上面的推理,那么实现的方法为:

枚举d∈[1,sqrt(2R)],然后根据上述推理可知:必先判d是否为2R的一约数。

此时d为2R的约数有两种情况:d=d或d=2R/d。

第一种情况:d=2R/d。枚举a∈[1,sqrt(2R/2d)] <由2*a*a < 2*R/d转变来>,算出对应的b=sqrt(2R/d-a^2),检查是否此时的A,B满足:A≠B且A,B互质 <根据上面的推理可知必需满足此条件>,若是就将答案加1

第二种情况:d=d。枚举a∈[1,sqrt(d/2)] <由2*a*a < d转变来>,算出对应的b=sqrt(d-a^2),检查是否此时的A,B满足:A≠B且A,B互质 <根据上面的推理可知必需满足此条件>,若是就将答案加1

因为这样只算出了第一象限的情况<上面枚举时均是从1开始枚举>,根据圆的对称性,其他象限的整点数与第一象限中的整点数相同,最后,在象限轴上的4个整点未算,加上即可,那么最后答案为ans=4*第一象限整点数+4

【时间复杂度分析】:

枚举d:O(sqrt(2R)),然后两次枚举a:O(sqrt(d/2))+O(sqrt(R/d)),求最大公约数:O(logN)

下面给出AC代码:

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
inline void write(ll x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>)
{
write(x/);
}
putchar(x%+'');
}
ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
inline bool check(ll y,double x)
{
if(x==floor(x))//判断整点
{
ll x1=(ll)floor(x);
if(gcd(x1*x1,y*y)==&&x1*x1!=y*y)//gcd(A,B)==1&&A!=B
return true;
}
return false;
}
int main()
{
ll R;
R=read();
ll ans=;
for(ll d=;d<=(ll)sqrt(*R);d++)//1<=d^2<=2R
{
if((*R)%d==)
{
for(ll a=;a<=(ll)sqrt(*R/(*d));a++)//2*a^2<2*R/d
{
double b=sqrt(((*R)/d)-a*a);
if(check(a,b))
ans++;
}
if(d!=(*R)/d)
{
for(ll a=;a<=(ll)sqrt(d/);a++)//2*a^2<=d
{
double b=sqrt(d-a*a);
if(check(a,b))
ans++;
}
}
}
}
printf("%lld\n",ans*+);
return ;
}

BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】的更多相关文章

  1. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  2. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  3. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  4. BZOJ 1041 [HAOI2008]圆上的整点:数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...

  5. BZOJ 1041 [HAOI2008]圆上的整点:数学【费马平方和定理】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1041 题意: 给定n(n <= 2*10^9),问你在圆x^2 + y^2 = n^ ...

  6. BZOJ(2) 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4966  Solved: 2258[Submit][Sta ...

  7. 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Sta ...

  8. 【BZOJ】1041: [HAOI2008]圆上的整点(几何)

    http://www.lydsy.com:808/JudgeOnline/problem.php?id=1041 所谓的神题,我不会,直接题解..看了半天看懂题解了.详见hzwer博客 这题呢,我只能 ...

  9. 1041: [HAOI2008]圆上的整点 - BZOJ

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数.Input rOutput 整点个数Sample Input4Sample Output4HINT n ...

随机推荐

  1. StreamCQL编写jstorm拓扑任务入门

    一,什么是 StreamCQL StreamCQL(Stream Continuous Query Language)是一个类似SQL的声明式语言, 目的是在流计算平台(目前也就是jstrom)的基础 ...

  2. JavaScript构造函数、继承的理解

    前两天稍微深入一点点理解了原型和原型链,然后就开始有挺多疑问的: function dog() { this.name = "huahua"; } var cat = new do ...

  3. JS中数组的方法

    1. join() Array.join() 是 String.split() 的逆向操作 var arr = [1, 2, 3] arr.join()// "1,2,3" arr ...

  4. c# 了解c# 面向对象

    C#是微软公司发布的一种面向对象的.运行于.NET Framework之上的高级程序设计语言.并定于在微软职业开发者论坛(PDC)上登台亮相.C#是微软公司研究员Anders Hejlsberg的最新 ...

  5. centos7 yum 安装 redis

    //从中国科学技术大学开源镜像站 wget http://mirrors.ustc.edu.cn/epel/7/x86_64/Packages/e/epel-release-7-11.noarch.r ...

  6. 程序猿的日常——Java中的集合列表

    列表对于日常开发来说实在是太常见了,以至于很多开发者习惯性的用到数组,就来一个ArrayList,根本不做过多的思考.其实列表里面还是有很多玩法的,有时候玩不好,搞出来bug还得定位半天.所以这里就再 ...

  7. JavaScript 计算指定月份有多少天

    用 js 画工作日历的时候,需要用 js 计算指定月份一共有多少天 在网上找了些方法,都比较繁琐,后来灵机一动,想到一个偷懒的办法,分享一下 一.原理分析 要想得到某月有多少天,只需要获取到当月最后一 ...

  8. TypeScript VS JavaScript 深度对比

    TypeScript 和 JavaScript 是目前项目开发中较为流行的两种脚本语言,我们已经熟知 TypeScript 是 JavaScript 的一个超集,但是 TypeScript 与 Jav ...

  9. JavaScript 浏览器类型及版本号

    项目中偶尔用到判断浏览器类型及相关版本问题,现记录相关代码: function getBrowserVertion(userAgent) { var browserName, browserVersi ...

  10. [js高手之路]从零开始打造一个javascript开源框架gdom与插件开发免费视频教程连载中

    百度网盘下载地址:https://pan.baidu.com/s/1kULNXOF 优酷土豆观看地址:http://v.youku.com/v_show/id_XMzAwNTY2MTE0MA==.ht ...