poj3417

题意

给出一颗 n 个节点, n - 1 条边的树,再加上 m 条新边,允许删掉树边和新边各一条,问能使树分为两部分的方案数。

分析

在树的基础上加上不重复的新边一定会构成环,那么考虑的就是怎么拆分环。

对于给出的新边(u, v),构成的环就是,u -> LCA(u, v) -> v -> u,将环上的边都标记加1,最后统计每条边的标记值,

如果一条边未被标记过,那么只要拆掉这条边就分成两部分了,即有 m 中方案数了;如果被标记过一次,那么在拆掉这条边的同时,一定要拆掉构成这个环的新边,即有 1 种方案;如果标记数大于 1,也就是说这条边被两个环同时标记过,根据题目的条件,无法分成两块了,即没有这种方案。

在求标记值的时候,要用到树形DP,设 hide[u] 为 u 到它的父节点所连边被标记过的次数,对于读入的新边 (u, v), hide[u]++ ,hide[v]++,hide[LCA(u, v)] -= 2,这个技巧在求区间覆盖时很常用。

最后,建边要用到链式前向星,向量超时了 (ง •̀_•́)ง┻━┻。

code

#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
typedef pair<int, int> P;
typedef long long ll;
const int MAXN = 1e5 + 5; // 最大节点数
const int LOG_N = 60; // 树的最大深度
int n, m;
int head[MAXN];
struct Edge
{
int to, next;
}edge[MAXN * 2];
int depth[MAXN]; // 节点深度
int parent[LOG_N][MAXN]; // parent[k][i]表示 i 向上走 2^k 步能到达的节点
int hide[MAXN]; // u到它的父亲节点所连边被覆盖过几次
int cnt;
void add(int u, int v)
{
edge[cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt++;
}
void dfs(int pre, int u, int d)
{
parent[0][u] = pre;
depth[u] = d;
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if(v != pre) dfs(u, v, d + 1);
}
}
void init()
{
int root = 1;
dfs(-1, root, 0);
for(int k = 1; k < LOG_N; k++)
{
for(int i = 1; i <= n; i++)
{
if(parent[k - 1][i] < 0) parent[k][i] = -1;
else parent[k][i] = parent[k - 1][parent[k - 1][i]];
}
}
}
int lca(int u, int v)
{
if(depth[u] > depth[v]) swap(u, v);
for(int i = 0; i < LOG_N; i++) // u 和 v 向上走到同一深度
{
if((depth[v] - depth[u]) >> i & 1) // 把 (depth[v] - depth[i]) 化成二进制后可以看到,就是找到所有 1 的位置
{
v = parent[i][v];
}
}
if(v == u) return u;
for(int i = LOG_N - 1; i >= 0; i--) // 找 lca
{
if(parent[i][u] != parent[i][v]) // 如果相同,那么一定是公共祖先或公共祖先之上的节点
{
u = parent[i][u];
v = parent[i][v];
}
}
return parent[0][u];
}
void dfs2(int pre, int u)
{
for(int i = head[u]; ~i; i = edge[i].next)
{
int v = edge[i].to;
if(v != pre)
{
dfs2(u, v);
hide[u] += hide[v];
}
}
}
int main()
{
while(~scanf("%d%d", &n, &m))
{
memset(head, -1, sizeof head);
for(int i = 1; i < n; i++)
{
int x, y;
scanf("%d%d", &x, &y);
add(x, y);
add(y, x);
}
init();
for(int i = 0; i < m; i++)
{
int x, y;
scanf("%d%d", &x, &y);
int node = lca(x, y);
hide[x]++;
hide[y]++;
hide[node] -= 2;
}
dfs2(-1, 1);
int ans = 0;
for(int i = 2; i <= n; i++)
{
if(hide[i] == 0) ans += m;
else if(hide[i] == 1) ans++;
}
printf("%d\n", ans);
}
return 0;
}

poj3417的更多相关文章

  1. poj3417 Network 树形Dp+LCA

    题意:给定一棵n个节点的树,然后在给定m条边,去掉m条边中的一条和原树中的一条边,使得树至少分为两部分,问有多少种方案. 神题,一点也想不到做法, 首先要分析出加入一条边之后会形成环,形成环的话,如果 ...

  2. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  3. POJ3417 Network(算竞进阶习题)

    LCA + 树上差分(边差分) 由题目意思知,所有主要边即为该无向图的一个生成树. 我们考虑点(u,v)若连上一条附加边,那么我们切断(u,v)之间的主要边之后,由于附加边的存在,(u,v)之间的路径 ...

  4. POJ3417 LCA+树dp

    http://poj.org/problem?id=3417 题意:先给出一棵无根树,然后下面再给出m条边,把这m条边连上,然后每次你能毁掉两条边,规定一条是树边,一条是新边,问有多少种方案能使树断裂 ...

  5. POJ3417 Network

    一道LCA+树上差分 原题链接 显然每一条新增边都会导致环. 如果试着举些例子的话,很容易发现割掉非环上的边,则割掉其他任意一条新增边都可达成目标:若割掉的原有边是一个环上的边,那么只有割掉导致这个环 ...

  6. poj3417 Network 树上差分+LCA

    题目传送门 题目大意:给出一棵树,再给出m条非树边,先割掉一条树边,再割掉一条非树边,问有几种割法,使图变成两部分. 思路:每一条 非树边会和一部分的树边形成一个环,分三种情况: 对于那些没有形成环的 ...

  7. [poj3417]Network(LCA+树形dp)

    题意:给出一棵无根树,然后下面再给出m条边,把这m条边连上,每次你去两条边,规定一条是树边,一条是新边,问有多少种方案能使树断裂. 解题关键:边权转化为点权,记录每条边被环覆盖的次数,通过val[a] ...

  8. poj3417 Network——LCA+树上差分

    题目:http://poj.org/problem?id=3417 根据一条边被几个环覆盖来判断能不能删.有几种情况等: 用树上差分,终点 s++,LCA s-=2,统计时计算子树s值的和即可: 用S ...

  9. poj3417 闇の連鎖 【树上差分】By cellur925

    闇の連鎖(yam.pas/c/cpp)题目描述传说中的暗之连锁被人们称为 Dark.Dark 是人类内心的黑暗的产物,古今中外的勇者们都试图打倒它.经过研究,你发现 Dark 呈现无向图的结构,图中有 ...

随机推荐

  1. 浅谈MVC页面之间参数传递

    关于MVC页面之间的传值,有多种方式,下面,我们就Html.RenderAction 方式 和 Html.RenderPartial 方式 来给大家分享一下有什么不同. 一.Html.RenderAc ...

  2. jQuery的工作原理

    jQuery是为了改变javascript的编码方式而设计的. jQuery本身并不是UI组件库或其他的一般AJAX类库. 那么它是如何实现它的声明的呢? 先看一段简短的使用流程: (1).查找(创建 ...

  3. Python的内置函数open()的注意事项

    用法 : open("file_address","open_mode")例子 : f = open("D:\PycharmProjects\log. ...

  4. SQL生成一年每一天的时间列表的几种方法

    工作好几年了,一直没有写博客,准备捡起来...   以下脚本适用环境:SQL SERVER (starting with 2012)   1.构建序列:   /*1-1:利用交叉连接,推荐下列这种写法 ...

  5. jQuery修炼心得-DOM节点的删除

    要移除页面上节点是开发者常见的操作,jQuery提供了几种不同的方法用来处理这个问题. 1.empty empty 顾名思义,清空方法,但是与删除又有点不一样,因为它只移除了 指定元素中的所有子节点. ...

  6. mui开发app之多图压缩与上传(仿qq空间说说发表)

    欲实现效果图 提出需求点: 用户可自由添加删除替换多张图片,并且显示相应缩略图,限制为8张 用户可选择压缩图或直接上传原图功能 返回提醒用户会丢失填写的信息 下面一个个实现上述需求,从简单到复杂: 需 ...

  7. 【算法系列学习】Dijkstra求最短路 [kuangbin带你飞]专题四 最短路练习 D - Silver Cow Party

    https://vjudge.net/contest/66569#problem/D trick:1~N各点到X可以通过转置变为X到1~N各点 #include<iostream> #in ...

  8. 【算法系列学习三】[kuangbin带你飞]专题二 搜索进阶 之 A-Eight 反向bfs打表和康拓展开

    [kuangbin带你飞]专题二 搜索进阶 之 A-Eight 这是一道经典的八数码问题.首先,简单介绍一下八数码问题: 八数码问题也称为九宫问题.在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的 ...

  9. Yeelink初步体验

    环境 Qemu: 2.8.0 开发板:vexpress-ca9   概述     前面的博文已经使我们的虚拟开发板具备了访问外网的目的,离物联网越来越近了.要玩物联网,Yeelink不得不说,它提供了 ...

  10. 关于Yii框架的基础知识

    第一次写博文,也不知道怎么写,不太熟悉,带小伙伴学习一样我日常使用的Yii框架. PHP中的开发框架有很多,比如:ThinkPHP.Yii.CI.Laravel.Phalcon等.现在流行度最高的是L ...