[USACO15JAN]电影移动Moovie Mooving
[USACO15JAN]电影移动Moovie Mooving
时间限制: 2 Sec 内存限制: 128 MB
题目描述
Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer John for L (1 <= L <= 100,000,000) minutes, during which time she wants to watch movies continuously. She has N (1 <= N <= 20) movies to choose from, each of which has a certain duration and a set of showtimes during the day. Bessie may enter and exit a movie at any time during one if its showtimes, but she does not want to ever visit the same movie twice, and she cannot switch to another showtime of the same movie that overlaps the current showtime.
Help Bessie by determining if it is possible for her to achieve her goal of watching movies continuously from time 0 through time L. If it is, determine the minimum number of movies she needs to see to achieve this goal (Bessie gets confused with plot lines if she watches too many movies).
奶牛贝西想连续看L (1 <= L <= 100,000,000)分钟的电影,有 N (1 <= N <= 20)部电影可供选择,每部电影会在一天的不同时段放映。
贝西可以在一部电影播放过程中的任何时间进入或退出放映厅。但她不愿意重复看到一部电影,所以每部电影她最多看到一次。她也不能在看一部电影的过程中,换到另一个正在播放相同电影的放映厅。
请帮贝西计算她能够做到从0到L分钟连续不断地观看电影,如果能,请计算她最少看几部电影就行了。
输入
The first line of input contains N and L.
The next N lines each describe a movie. They begin with its integer duration, D (1 <= D <= L) and the number of showtimes, C (1 <= C <= 1000). The remaining C integers on the same line are each in the range 0..L, and give the starting time of one of the showings of the movie. Showtimes are distinct, in the range 0..L, and given in increasing order.
输出
A single integer indicating the minimum number of movies that Bessie
needs to see to achieve her goal. If this is impossible output -1
instead.
样例输入
50 3 15 30 55
40 2 0 65
30 2 20 90
20 1 0
样例输出
提示
Bessie should attend the first showing of the fourth movie from time 0 to time 20. Then she watches the first showing of the first movie
from time 20 to time 65. Finally she watches the last showing of the second movie from time 65 to time 100.
题解:
因为每个电影都只能看一次,再看n的范围,果断状压dp。
f[i]表示当前i状态下所能够达到的最大时间点。
每次找到一个不在i状态下的电影,然后找到在f[i]时刻看第j部电影可以达到的最大时间。
判断一下f[i|t[j]]是否达到了t,如果是,就更新一下答案就可以了。
具体看代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
using namespace std;
int n,m,cnt,ans=;
int f[<<],t[],d[],a[][],c[];
int find(int x,int t)
{
int l=,r=c[x],s=;
while(l<=r)
{
int mid=(l+r)>>;
if(a[x][mid]>t)
{
r=mid-;
}
else
{
s=mid;
l=mid+;
}
}
if(s==)return ;
if(a[x][s]+d[x]>=t)return a[x][s]+d[x];
else return ;
}
int lowbit(int x)
{
return x&(-x);
}
void judge(int x)
{
int i,p=;
for(i=x;i;i-=lowbit(i))p++;
ans=min(ans,p);
return;
}
int main()
{
int i,j;
scanf("%d%d",&n,&m);
cnt=(<<n)-;
for(i=; i<=n; i++)t[i]=<<(i-);
for(i=; i<=n; i++)
{
scanf("%d%d",&d[i],&c[i]);
for(j=; j<=c[i]; j++)
scanf("%d",&a[i][j]);
}
for(i=; i<=cnt; i++)
{
for(j=; j<=n; j++)
{
if(!(i&t[j]))
{
f[i|t[j]]=max(f[i|t[j]],find(j,f[i]));
if(f[i|t[j]]>=m)
{
judge(i|t[j]);
}
}
}
}
if(ans==)cout<<-;
else cout<<ans;
return ;
}
[USACO15JAN]电影移动Moovie Mooving的更多相关文章
- [bzoj3886] [USACO15JAN]电影移动Moovie Mooving
题目链接 状压\(dp\). 注意到\(n\leq 20\)且每个只能用一次,所以很显然可以压缩每部电影看过没,记\(f[sta]\)为状态为\(sta\)时最多可以看多久. 转移时先枚举状态,然后枚 ...
- P3118 [USACO15JAN]Moovie Mooving G
P3118 [USACO15JAN]Moovie Mooving G Link 题目描述 Bessie is out at the movies. Being mischievous as alway ...
- [USACO15JAN]Moovie Mooving G
[USACO15JAN]Moovie Mooving G 状压难题.不过也好理解. 首先我们根据题意: she does not want to ever visit the same movie t ...
- Luogu3118:[USACO15JAN]Moovie Mooving
题面 传送门 Sol 设\(f[S]\)表示看过的电影集合为\(S\),当前电影的最大结束时间 枚举电影和电影的开始时间转移 可以对开始时间\(sort\) 二分一下转移即可 # include &l ...
- BZOJ3886 : [Usaco2015 Jan]Moovie Mooving
f[i]表示用i集合内的电影可以达到的最长时间 f[i]向f[i|(1<<j)]更新,此时的时间为第j部电影在f[i]前的最晚上映时间 先排序一遍离散化后用前缀最大值解决 时间复杂度$O( ...
- 【bzoj3886】[Usaco2015 Jan]Moovie Mooving 状态压缩dp+二分
题目描述 Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer J ...
- [Usaco2015 Jan]Moovie Mooving
Description Bessie is out at the movies. Being mischievous as always, she has decided to hide from F ...
- DP测试总结
T1:三取方格数 题目描述 设有N*N的方格图,我们将其中的某些方格填入正整数,而其他的方格中放入0.某人从图得左上角出发,可以向下走,也可以向右走,直到到达右下角.在走过的路上,他取走了方格中的数. ...
- bzoj Usaco补完计划(优先级 Gold>Silver>资格赛)
听说KPM初二暑假就补完了啊%%% 先刷Gold再刷Silver(因为目测没那么多时间刷Silver,方便以后TJ2333(雾 按AC数降序刷 ---------------------------- ...
随机推荐
- java中的GC(gabage collection)如何工作
1. “引用记数(reference counting)”是一种简单但速度很慢的垃圾回收技术.每个对象都含有一个引用记数器,当有引用连接至对象时,引用计数加1.当引用离开作用域或被置 为null时,引 ...
- hdu1520 Anniversary party 简单树形DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1520 思路:树形DP的入门题 定义dp[root][1]表示以root为根节点的子树,且root本身参 ...
- [ERR] Node 172.168.63.202:7001 is not empty. Either the nodealready knows other nodes (check with CLUSTER NODES) or contains some
关于启动redis集群时: [ERR] Node 172.168.63.202:7001 is not empty. Either the nodealready knows other nodes ...
- [笔记]机器学习(Machine Learning) - 02.逻辑回归(Logistic Regression)
逻辑回归算法是分类算法,虽然这个算法的名字中出现了"回归",但逻辑回归算法实际上是一种分类算法,我们将它作为分类算法使用.. 分类问题:对于每个样本,判断它属于N个类中的那个类或哪 ...
- 【wannacry病毒之暗网】-如何访问"暗网"(慎入)
心里能力不强的人,请别看. 有些事情还是不要接触比较好, 社会最恶一面不是随随便便就能接触到的, 也不是你能理解的 你想要用暗网做什么是你考虑的一个问题 什么是暗网? 所谓的"暗网" ...
- Spring入门导读——IoC和AOP
和MyBatis系列不同的是,在正式开始Spring入门时,我们先来了解两个关于Spring核心的概念,IoC(Inverse of Control)控制反转和AOP()面向切面编程. 1.IoC(I ...
- 深入理解Struts2----数据校验
在表现层的数据处理方面主要分为两种类型,一种是类型转换,这点我们上篇已经简单介绍过,另外一种则是我们本篇文章将要介绍的:数据校验.对于我们的web应用,我们经常需要和用户进行交互收集用户信息,那么无论 ...
- EntityFramework6.X 之 Database Initialization
Database Initialization 下图是数据库初始化的工作流 EF为数据库初始化准备了多种策略: l CreateDatabaseIfNotExists:这是默认的初始化策略 l D ...
- Adobe Photoshop CS6中文破解MAC版
Adobe Photoshop CS6中文破解MAC版 下载地址及破解方法 http://www.sdifenzhou.com/657.html
- java 上传1(使用java组件fileupload)
使用fileupload要添加以下包