http://poj.org/problem?id=3070

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

这道题就是快速幂http://blog.csdn.net/u013795055/article/details/38599321

还有矩阵相乘

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <vector>
#include <queue> using namespace std;
#define memset(a,b) memset(a,b,sizeof(a))
#define N 4
#define INF 0xfffffff
struct node
{
int a[N][N];
}e; node mm(node p,node q)
{
node t;
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
t.a[i][j]=;
for(int k=;k<;k++)
{
t.a[i][j]=(t.a[i][j]+(p.a[i][k]*q.a[k][j]))%;
}
}
}
return t;
} node mul(node p,int n)
{ node q;
for(int i=;i<;i++)
{
for(int j=;j<;j++)
{
q.a[i][j]=(i==j);
}
}///这个是为了当n是奇数是第一次跟q相乘是还是原来的p,为了下一次跟下一奇数相乘
while(n)
{
if(n&)
q=mm(q,p);
n=n/;
p=mm(p,p);
}
return q;
}
int main()
{
int n;
while(scanf("%d",&n),n!=-)
{
e.a[][]=;
e.a[][]=;
e.a[][]=;
e.a[][]=;
node b=mul(e,n);
printf("%d\n",b.a[][]);
}
return ;
}

Fibonacci--poj3070(矩阵快速幂)的更多相关文章

  1. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

  2. 2018.09.25 poj3070 Fibonacci(矩阵快速幂)

    传送门 矩阵快速幂板题,写一道来练练手. 这一次在poj做题总算没忘了改万能库. 代码: #include<iostream> #include<cstdio> #define ...

  3. poj3070 Fibonacci(矩阵快速幂)

    矩阵快速幂基本应用. 对于矩阵乘法与递推式之间的关系: 如:在斐波那契数列之中 f[i] = 1*f[i-1]+1*f[i-2]  f[i-1] = 1*f[i-1] + 0*f[i-2].即 所以, ...

  4. hdu3306 Another kind of Fibonacci【矩阵快速幂】

    转载请注明出处:http://www.cnblogs.com/KirisameMarisa/p/4187670.html 题目链接:http://acm.hdu.edu.cn/showproblem. ...

  5. POJ 3070 Fibonacci 【矩阵快速幂】

    <题目链接> Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 ...

  6. poj3070矩阵快速幂求斐波那契数列

      Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13172   Accepted: 9368 Desc ...

  7. Project Euler 435 Polynomials of Fibonacci numbers (矩阵快速幂)

    题目链接: https://projecteuler.net/problem=435 题意: The Fibonacci numbers $ {f_n, n ≥ 0}$ are defined rec ...

  8. poj 3070 Fibonacci(矩阵快速幂,简单)

    题目 还是一道基础的矩阵快速幂. 具体的居者的幂公式我就不明示了. #include<stdio.h> #include<string.h> #include<algor ...

  9. POJ 3070 Fibonacci(矩阵快速幂)

    题目链接 题意 : 用矩阵相乘求斐波那契数的后四位. 思路 :基本上纯矩阵快速幂. #include <iostream> #include <cstring> #includ ...

  10. POJ3070 矩阵快速幂模板

    题目:http://poj.org/problem?id=3070 矩阵快速幂模板.mod写到乘法的定义部分就行了. 别忘了 I ( ) 和 i n i t ( ) 要传引用! #include< ...

随机推荐

  1. Proteus与Keil连接及其仿真(有例子哦!)

    记录一下Proteus仿真的一些设置和使用,以方便自己以后复习和大家交流!如有错误,希望大家指正. 1.Proteus软件的安装,这里就不作说明了.

  2. 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting

    题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...

  3. centos7 设置grub密码及单用户登录实例

    centos7与centos6在设置grub密码的操作步骤上有很大的差别,特此记录供以后查用 grub加密的目的: 防止不法分子利用单用户模式修改root密码 给grub加密可以采用明文或者加密的密文 ...

  4. environ - 用户环境(变量)

    SYNOPSIS 总览 extern char **environ; DESCRIPTION 描述 变量 environ 指向的是一个叫 'environment'(环境)的字符串数组 (这个变量必须 ...

  5. DROP FUNCTION - 删除一个函数

    SYNOPSIS DROP FUNCTION name ( [ type [, ...] ] ) [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP FUNCTION ...

  6. 摄像头调用代码 笔记本的话,本身有一个摄像头,由于用的usb摄像头,需要把笔记本的摄像头禁用后,再使用

    摄像头调用代码 笔记本的话,本身有一个摄像头,由于用的usb摄像头,需要把笔记本的摄像头禁用后,再使用 <!DOCTYPE html> <html lang="en&quo ...

  7. 线性判别分析(LDA)

    降维的作用: 高维数据特征个数多,特征样本多,维度也很大,计算量就会很大,调参和最后评估任务时,计算量非常大,导致效率低. 高位数据特征特别多,有的特征很重要,有的特征不重要,可以通过降维保留最好.最 ...

  8. mybaits2-Dao开发

    项目结构: 1.创建project,导入相关依赖(前提).配置db.properties与mybaits-config #mysql驱动 db.driver=com.mysql.jdbc.Driver ...

  9. Elasticsearch document深度剖析

    1. 针对Elasticsearch并发冲突问题,ES内部是如何解决的? 1)ES内部是线程异步并发修改的,是基于_version版本号进行乐观锁并发控制的: 2)若后修改的先到了,那么修改后版本发生 ...

  10. 【简●解】[AHOI2009]中国象棋

    [题目大意] 叫你在\(n×m\)的棋盘上放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,问有多少种放置方法. [关键词] \(DP\) 分类讨论 乘法和加法原理 [分析] 仔细观察就会发 ...