Bag-of-words模型、TF-IDF模型
Bag-of-words model (BoW model) 最早出现在NLP和IR(information retrieval)领域. 该模型忽略掉文本的语法和语序, 用一组无序的单词(words)来表达一段文字或一个文档. 近年来, BoW模型被广泛应用于计算机视觉中. 与应用于文本的BoW类比, 图像的特征(feature)被当作单词(Word).
应用于文本的BoW model:
Wikipedia[1]上给出了如下例子:
John likes to watch movies. Mary likes too. John also likes to watch football games.
根据上述两句话中出现的单词, 我们能构建出一个字典 (dictionary):
{"John": 1, "likes": 2, "to": 3, "watch": 4, "movies": 5, "also": 6, "football": 7, "games": 8, "Mary": 9, "too": 10}
该字典中包含10个单词, 每个单词有唯一索引, 注意它们的顺序和出现在句子中的顺序没有关联. 根据这个字典, 我们能将上述两句话重新表达为下述两个向量:
[1, 2, 1, 1, 1, 0, 0, 0, 1, 1] [1, 1, 1, 1, 0, 1, 1, 1, 0, 0]
这两个向量共包含10个元素, 其中第i个元素表示字典中第i个单词在句子中出现的次数. 因此BoW模型可认为是一种统计直方图 (histogram). 在文本检索和处理应用中, 可以通过该模型很方便的计算词频.
tf-idf模型
目前,真正在搜索引擎等实际应用中广泛使用的是tf-idf模型。tf-idf模型的主要思想是:如果词w在一篇文档d中出现的频率高,并且在其他文档中很少出现,则认为词w具有很好的区分能力,适合用来把文章d和其他文章区分开来。该模型主要包含了两个因素:
1) 词w在文档d中的词频tf (Term Frequency),即词w在文档d中出现次数count(w, d)和文档d中总词数size(d)的比值:
tf(w,d) = count(w, d) / size(d)
2) 词w在整个文档集合中的逆向文档频率idf (Inverse Document Frequency),即文档总数n与词w所出现文件数docs(w, D)比值的对数:
idf = log(n / docs(w, D))
tf-idf模型根据tf和idf为每一个文档d和由关键词w[1]…w[k]组成的查询串q计算一个权值,用于表示查询串q与文档d的匹配度:
tf-idf(q, d)
= sum { i = 1..k | tf-idf(w[i], d) }
= sum { i = 1..k | tf(w[i], d) * idf(w[i]) }
http://coolshell.cn/articles/8422.html
Bag-of-words模型、TF-IDF模型的更多相关文章
- 25.TF&IDF算法以及向量空间模型算法
主要知识点: boolean model IF/IDF vector space model 一.boolean model 在es做各种搜索进行打分排序时,会先用boolean mo ...
- Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析
觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...
- TF的模型文件
TF的模型文件 标签(空格分隔): TensorFlow Saver tensorflow模型保存函数为: tf.train.Saver() 当然,除了上面最简单的保存方式,也可以指定保存的步数,多长 ...
- TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model
TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model Checkmate is designed to be a simple drop-i ...
- 文本分类学习(三) 特征权重(TF/IDF)和特征提取
上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的 ...
- NLP学习(1)---Glove模型---词向量模型
一.简介: 1.概念:glove是一种无监督的Word representation方法. Count-based模型,如GloVe,本质上是对共现矩阵进行降维.首先,构建一个词汇的共现矩阵,每一行是 ...
- (原)linux下caffe模型转tensorflow模型
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7419352.html 参考网址: https://github.com/ethereon/caffe- ...
- TensorFlow笔记四:从生成和保存模型 -> 调用使用模型
TensorFlow常用的示例一般都是生成模型和测试模型写在一起,每次更换测试数据都要重新训练,过于麻烦, 以下采用先生成并保存本地模型,然后后续程序调用测试. 示例一:线性回归预测 make.py ...
- 【6】TensorFlow光速入门-python模型转换为tfjs模型并使用
本文地址:https://www.cnblogs.com/tujia/p/13862365.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...
随机推荐
- Animate.css_css3动画库介绍
插件描述:Animate.css内置了很多典型的css3动画,兼容性好使用方便. Animate.css是一个有趣的,跨浏览器的css3动画库.很值得我们在项目中引用. 用法 1.首先引入animat ...
- python基础一 day6 序列操作集合
列表删除:pop([index])有返回值 remove('元素‘)没有返回值 按元素删,元素是什么,就写什么,是数字就写数字,不要加引号,加引号就变成字符串了,没有就报错. 字典删除:pop( ’键 ...
- CPP-STL:随机数发生器random_shuffle
//--------------------------------------------------------------------------- #include <string.h& ...
- WebDriverException: Message: unknown error: Chrome failed to start: crashed
the last answer WebDriverException: Message: unknown error: Chrome failed to start: crashed
- Windows 命令收集
定时关机命令:schtasks /create /tn "关机" /tr "shutdown /s" /sc once /st 23:55
- mysql5.7配置
my3306.cnf [client] port = 3306 #端口socket = /data/mysql3306/mysql3306.sock #mysql以socket方式运行的soc ...
- 前端基础之JavaScript_1
摘要: JavaScript简介 引入方式 语言规范 JavaScript语言基础 变量声明 数据类型 运算符 流程控制 函数 词法分析 内置对象 一.JavaScript概述 1.ECMAScrip ...
- 小白安装Python环境详细步骤!
昨天,有小伙伴向我反映,他对我说“你好像还没教过我安装Python的吧?”听到这句话,我不禁汗颜起来,我的确好像没太注意Python学习的基础了,一直发各种爬虫与初学者看不懂的代码,在此我要向我的读者 ...
- Could not resolve dependencies for project com.shadow:shlang:jar:1.0-SNAPSHOT:
maven打包项目出现缺少jar包错误 如果是将本地引用的jar包放在了lib目录下并通过下面方式引入 解决方案为 <dependency> <groupId>com.o ...
- 【BZOJ 1588】[HNOI2002] 营业额统计(Treap)
Description 营业额统计 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每 ...