题目:

BZOJ1939(权限题)

分析:

这题很容易看出是DP,但是状态和转移都不是很好想……

用\(dp[l][r][c]\)表示在\(l\)前面已经新加了\(c\)个和\(l\)一样的弹子时,使区间\([l,r]\)消完所需插入的弹子数量

显然,当\(c\geq k-1\)时,这\(c\)个弹子和\(l\)组成了连续的至少\(k\)个弹子,这些情况是类似的(都可以一次消完)。因此可以用\(c=k-1\)的状态代表所有\(c\geq k-1\)的状态。

对于状态\((l,r,k-1)\),\(l\)可以和前面\(k-1\)个同色弹子一起消掉,因此只需要考虑要插入多少个才能完全消掉区间\([l+1,r]\)。这就得到第一个转移:(因为\([l+1,r]\)紧贴着\(l\),\(l+1\)左侧没有新插入的弹子,所以消掉\([l+1,r]\)所需插入的弹子数就是\(dp[l+1][r][0]\))

\[dp[l][r][k-1]=dp[l+1][r][0]
\]

对于状态\((l,r,c)\),在前面插入一个\(l\)的同色弹子就变成了\((l,r,c+1)\),所以比消完\((l,r,c+1)\)状态多一步,即:

\[dp[l][r][c]=dp[l][r][c+1]+1
\]

考虑对于弹子\(l\) ,除了在它前面加\((k-1)\)个同色弹子外,还可以找一个弹子\(i(i>l,a_l=a_i)\),先消去区间\([l+1,i-1]\)(该区间可能不存在),这样\(i\)左侧就有\((c+1)\)个同色弹子,这就是状态\((i,r,c+1)\)。由此得到第三个转移:(注意特判\(l+1=i\)时状态\((l+1,i-1,0)\)不存在,以及\(c+1\geq k\)时取\(c=k-1\))

\[dp[l][r][c]=dp[l+1][i-1][0]+dp[i][r][c+1](l+1\leq i-1)
\]

\[dp[l][r][c]=dp[i][r][c+1](l+1=i)
\]

代码:

有了DP方程以后代码还是很好写的

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
namespace zyt
{
const int N = 110, K = 7;
int arr[N], dp[N][N][K];
int work()
{
int n, k;
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n >> k;
for (int i = 0; i < n; i++)
cin >> arr[i];
for (int i = 0; i < n; i++)
for (int c = 0; c < k; c++)
dp[i][i][c] = k - c - 1;
for (int len = 2; len <= n; len++)
for (int l = 0; l + len - 1 < n; l++)
{
int r = l + len - 1;
for (int c = k - 1; c >= 0; c--)
{
if (c < k - 1)
dp[l][r][c] = dp[l][r][c + 1] + 1;
else
dp[l][r][c] = dp[l + 1][r][0];
if (arr[l] == arr[l + 1])
dp[l][r][c] = min(dp[l][r][c], dp[l + 1][r][min(k - 1, c + 1)]);
for (int i = l + 2; i <= r; i++)
if (arr[l] == arr[i])
dp[l][r][c] = min(dp[l][r][c], dp[l + 1][i - 1][0] + dp[i][r][min(k - 1, c + 1)]);
}
}
cout << dp[0][n - 1][0];
return 0;
}
}
int main()
{
return zyt::work();
}

【BZOJ1939】[Croatian2010] Zuma(动态规划)的更多相关文章

  1. 【动态规划】bzoj1939: [Croatian2010] Zuma

    隐约记得类似的一道JSOI祖玛……然后好像这题不能够把珠子合并成一段?或许是因为这里珠子碰在一起之后可以不消除? Description 有一行 N 个弹子,每一个都有一个颜色.每次可以让超过 K 个 ...

  2. Bzoj1939 [Croatian2010] Zuma

    Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 43  Solved: 31 Description 有一行 N 个弹子,每一个都有一个颜色.每次可以让超过 ...

  3. BZOJ 1032 JSOI2007 祖码Zuma 动态规划

    题目大意:给定一个祖玛序列,任选颜色射♂出珠子,问最少射♂出多少珠子 输入法近期越来越奇怪了0.0 首先我们把连续同样的珠子都缩在一起 令f[i][j]表示从i開始的j个珠子的最小消除次数 初值 f[ ...

  4. 「SPOJ6340」「BZOJ1939」ZUMA - ZUMA【记忆化搜索】

    题目链接 [洛谷传送门] 题解 \(f[i][j][k]\)表示在消除了\((i,j)\),在后面加上了\(k\)个珠子的总的珠子数. 考虑三种决策:(题目给出的\(k\)在下文表示成\(K\)) 决 ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. Codeforces Round #336 Zuma

    D. Zuma time limit per test:  2 seconds memory limit per test:  512 megabytes input:  standard input ...

  7. poj 动态规划题目列表及总结

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

  8. poj动态规划列表

    [1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...

  9. POJ 动态规划题目列表

    ]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322 ...

随机推荐

  1. webpack3 + vue 添加 serviceWorker

    新的vue脚手架已经可以自带pwa了,本文主要针对旧版的webpack. 先装三个插件: $npm i register-service-worker sw-precache-webpack-plug ...

  2. software collection

    software software Table of Contents 1. Privacy 2. GFW 2.1. google search 2.2. 修改 DNS 服务器 2.2.1. 修改ip ...

  3. Jboss 服务器SSL证书安装指南

    1.获取服务器证书 将证书签发邮件中的从BEGIN到 END结束的服务器证书内容(包括“-----BEGIN CERTIFICATE-----”和“-----END CERTIFICATE-----” ...

  4. 【04】JSONP 教程

    JSONP 教程 Jsonp(JSON with Padding) 是 json 的一种"使用模式",可以让网页从别的域名(网站)那获取资料,即跨域读取数据. 为什么我们从不同的域 ...

  5. Java基础学习总结(85)——Java中四种线程安全的单例模式实现方式

  6. html to canvas

    html to canvas Screenshots https://html2canvas.hertzen.com/ https://github.com/niklasvh/html2canvas ...

  7. 【GC分析】Java GC日志查看

    Java中的GC有哪几种类型? 参数 描述 UseSerialGC 虚拟机运行在Client模式的默认值,打开此开关参数后, 使用Serial+Serial Old收集器组合进行垃圾收集. UsePa ...

  8. 洛谷——P1255 数楼梯

    题目描述 楼梯有N阶,上楼可以一步上一阶,也可以一步上二阶. 编一个程序,计算共有多少种不同的走法. 输入输出格式 输入格式: 一个数字,楼梯数. 输出格式: 走的方式几种. 输入输出样例 输入样例# ...

  9. spring-cloud-starter-ribbon提供客户端的软件负载均衡算法

    Ribbon是什么? Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法,将Netflix的中间层服务连接在一起.Ribbon客户端组件提供一系列完善的配置项如连接超时 ...

  10. CloudEngine 6800基础配置-02_常用命令操作

    查看未提交配置   system-view ftp server enable display configuration candidate   删除未提交的配置 clear configurati ...