题目链接 Valid Sets

题目要求我们在一棵树上计符合条件的连通块的个数。

满足该连通块内,点的权值极差小于等于d

树的点数满足 n <= 2000

首先我们先不管这个限制条件,也就是先考虑d为正无穷大的时候的情况。

我们要求出树上所有连通块的个数。

这个时候我们令f[i]为以i为根的子树中的连通块的数目。

此时状态转移方程为 f[x] = f[x] * (f[u] + 1)

其中f[x]初始值为1,u为x的儿子

最后f[1]的值(我们假设1为根结点)即为答案

时间复杂度为O(n)

注意到n只有2000,说明这题的时间复杂度不止O(n)

那么我们对于每一个点,以他的权值作为连通块的权值最小值。

于是就可以以他为根做一次DFS。

若DFS的过程中碰到权值比他小的点,或者权值减他的权值大于d的点,我们就不往这个点DFS下去。

但是有一种特殊情况

这样做可能导致重复计算

因为这样的方法会导致两个权值相同切且相连的点组成的连通块被计算多次。

于是我们对那些权值相同切且相连的点的边,定一个方向。

规定编号小的点能DFS到编号大,和他相连且权值和他相等的点

但是反过来就不行了。

这样规定了一个方向之后我们就消除了重复计算的问题。

时间复杂度 $O(n^{2})$

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 2010;
const LL mod = 1e9 + 7; vector <int> v[N];
int n, d, et, cnt;
int a[N];
LL f[N];
LL ans = 0; void dfs(int x, int fa){
LL now = 0;
f[x] = 1;
for (auto u : v[x]){
if (u == fa) continue;
if (a[u] > cnt + d || a[u] < cnt) continue;
if (a[u] == cnt && u < et) continue;
dfs(u, x);
(f[x] *= f[u] + 1) %= mod;
}
} int main(){ scanf("%d%d", &d, &n);
rep(i, 1, n) scanf("%d", a + i);
rep(i, 1, n - 1){
int x, y;
scanf("%d%d", &x, &y);
v[x].push_back(y);
v[y].push_back(x);
} rep(i, 1, n){
cnt = a[i]; et = i;
memset(f, 0, sizeof f);
dfs(i, 0);
(ans += f[i]) %= mod;
} printf("%lld\n", ans);
return 0;
}

Codeforces 486D Valid Sets (树型DP)的更多相关文章

  1. Codeforces 486D Valid Sets:Tree dp【n遍O(n)的dp】

    题目链接:http://codeforces.com/problemset/problem/486/D 题意: 给你一棵树,n个节点,每个节点的点权为a[i]. 问你有多少个连通子图,使得子图中的ma ...

  2. Codeforces 486D. Valid Sets

    D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  3. Codeforces 23E Tree(树型DP)

    题目链接 Tree $dp[x][i]$表示以x为根的子树中x所属的连通快大小为i的时候 答案最大值 用$dp[x][j]$ * $dp[y][k]$ 来更新$dp[x][j + k]$. (听高手说 ...

  4. Codeforces 149D Coloring Brackets(树型DP)

    题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...

  5. Codeforces 581F Zublicanes and Mumocrates(树型DP)

    题目链接  Round 322 Problem F 题意  给定一棵树,保证叶子结点个数为$2$(也就是度数为$1$的结点),现在要把所有的点染色(黑或白) 要求一半叶子结点的颜色为白,一半叶子结点的 ...

  6. 【题解】codeforces 219D Choosing Capital for Treeland 树型dp

    题目描述 Treeland国有n个城市,这n个城市连成了一颗树,有n-1条道路连接了所有城市.每条道路只能单向通行.现在政府需要决定选择哪个城市为首都.假如城市i成为了首都,那么为了使首都能到达任意一 ...

  7. POJ3659 Cell Phone Network(树上最小支配集:树型DP)

    题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...

  8. POJ 3342 - Party at Hali-Bula 树型DP+最优解唯一性判断

    好久没写树型dp了...以前都是先找到叶子节点.用队列维护来做的...这次学着vector动态数组+DFS回朔的方法..感觉思路更加的清晰... 关于题目的第一问...能邀请到的最多人数..so ea ...

  9. 【XSY1905】【XSY2761】新访问计划 二分 树型DP

    题目描述 给你一棵树,你要从\(1\)号点出发,经过这棵树的每条边至少一次,最后回到\(1\)号点,经过一条边要花费\(w_i\)的时间. 你还可以乘车,从一个点取另一个点,需要花费\(c\)的时间. ...

随机推荐

  1. 官方webupload上传多个文件或者图片的方法

    文件上传 页面代码: <!--引入CSS--> <link rel="stylesheet" type="text/css" href=&qu ...

  2. 相机 感光度iso,焦距,光圈,ccd 和 噪点, 景深关系表格

    表格 矩阵 感官度iso: 越低曝光速度越慢,所谓慢工出细活,成像质量会好,如果形成的话. 但是因为慢,所以要更多的光量,才能画完. 就需要更慢的快门 (但是太慢手抖的话就糊掉,或者动的物体形成轨迹. ...

  3. ios之自定义导航栏上的返回按钮

    导航栏的按钮,右边的按钮是可以自己随意添加的.但左边的返回按钮怎么定制?你会说,添加一个自己的按钮呗!你可以试试看,这样行不行. 正确的答案是重载UINavigationController类的pus ...

  4. js事件(事件冒泡与事件捕获)

    事件冒泡和事件捕获分别由微软和网景公司提出,这两个概念都是为了解决页面中事件流(事件发生顺序)的问题. <div id='aa' click='po'> <p id='bb' cli ...

  5. <MySQL>入门一 查询 DQL

    1. 数据库表 1.1 员工表 Create Table CREATE TABLE `employees` ( `employee_id` ) NOT NULL AUTO_INCREMENT, `fi ...

  6. react事件代理

    参考:https://github.com/youngwind/blog/issues/107 首先回顾以下原生事件的两个方法:event.stopImmediatePropagation 和 eve ...

  7. perl学习之:localtime

    Perl中localtime()函数以及sprintf (2011-4-25 19:39)localtime函数 localtime函数,根据它所在的上下文,可以用两种完全不同的方法来运行.在标量上下 ...

  8. day14 迭代器,生成器,函数的递归调用

    1.什么是迭代器 迭代是一个重复的过程,但是每次重复都是基于上一次重复的结果而继续 迭代取值的工具 2.为什么要用迭代器 迭代器的优点 ​ ①不依赖于索引取值 ​ ②更节省内存 缺点: ​ 1.不如按 ...

  9. Java并发编程的艺术 记录(一)

    模拟死锁 package com.gjjun.concurrent; /** * 模拟死锁,来源于<Java并发编程的艺术> * @Author gjjun * @Create 2018/ ...

  10. 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 F题

    The Heaviest Non-decreasing Subsequence Problem 解题心得 这个题就是一个简单的动态规划,非递减最长子序列的改版(加一个权重),只要把权重为5的改成5个权 ...